File size: 7,644 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import base64
from os import path as osp

import mmcv
import mmengine
import numpy as np
from nuimages import NuImages
from nuimages.utils.utils import mask_decode, name_to_index_mapping

nus_categories = ('car', 'truck', 'trailer', 'bus', 'construction_vehicle',
                  'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone',
                  'barrier')

NAME_MAPPING = {
    'movable_object.barrier': 'barrier',
    'vehicle.bicycle': 'bicycle',
    'vehicle.bus.bendy': 'bus',
    'vehicle.bus.rigid': 'bus',
    'vehicle.car': 'car',
    'vehicle.construction': 'construction_vehicle',
    'vehicle.motorcycle': 'motorcycle',
    'human.pedestrian.adult': 'pedestrian',
    'human.pedestrian.child': 'pedestrian',
    'human.pedestrian.construction_worker': 'pedestrian',
    'human.pedestrian.police_officer': 'pedestrian',
    'movable_object.trafficcone': 'traffic_cone',
    'vehicle.trailer': 'trailer',
    'vehicle.truck': 'truck',
}


def parse_args():
    parser = argparse.ArgumentParser(description='Data converter arg parser')
    parser.add_argument(
        '--data-root',
        type=str,
        default='./data/nuimages',
        help='specify the root path of dataset')
    parser.add_argument(
        '--version',
        type=str,
        nargs='+',
        default=['v1.0-mini'],
        required=False,
        help='specify the dataset version')
    parser.add_argument(
        '--out-dir',
        type=str,
        default='./data/nuimages/annotations/',
        required=False,
        help='path to save the exported json')
    parser.add_argument(
        '--nproc',
        type=int,
        default=4,
        required=False,
        help='workers to process semantic masks')
    parser.add_argument('--extra-tag', type=str, default='nuimages')
    args = parser.parse_args()
    return args


def get_img_annos(nuim, img_info, cat2id, out_dir, data_root, seg_root):
    """Get semantic segmentation map for an image.

    Args:
        nuim (obj:`NuImages`): NuImages dataset object
        img_info (dict): Meta information of img

    Returns:
        np.ndarray: Semantic segmentation map of the image
    """
    sd_token = img_info['token']
    image_id = img_info['id']
    name_to_index = name_to_index_mapping(nuim.category)

    # Get image data.
    width, height = img_info['width'], img_info['height']
    semseg_mask = np.zeros((height, width)).astype('uint8')

    # Load stuff / surface regions.
    surface_anns = [
        o for o in nuim.surface_ann if o['sample_data_token'] == sd_token
    ]

    # Draw stuff / surface regions.
    for ann in surface_anns:
        # Get color and mask.
        category_token = ann['category_token']
        category_name = nuim.get('category', category_token)['name']
        if ann['mask'] is None:
            continue
        mask = mask_decode(ann['mask'])

        # Draw mask for semantic segmentation.
        semseg_mask[mask == 1] = name_to_index[category_name]

    # Load object instances.
    object_anns = [
        o for o in nuim.object_ann if o['sample_data_token'] == sd_token
    ]

    # Sort by token to ensure that objects always appear in the
    # instance mask in the same order.
    object_anns = sorted(object_anns, key=lambda k: k['token'])

    # Draw object instances.
    # The 0 index is reserved for background; thus, the instances
    # should start from index 1.
    annotations = []
    for i, ann in enumerate(object_anns, start=1):
        # Get color, box, mask and name.
        category_token = ann['category_token']
        category_name = nuim.get('category', category_token)['name']
        if ann['mask'] is None:
            continue
        mask = mask_decode(ann['mask'])

        # Draw masks for semantic segmentation and instance segmentation.
        semseg_mask[mask == 1] = name_to_index[category_name]

        if category_name in NAME_MAPPING:
            cat_name = NAME_MAPPING[category_name]
            cat_id = cat2id[cat_name]

            x_min, y_min, x_max, y_max = ann['bbox']
            # encode calibrated instance mask
            mask_anno = dict()
            mask_anno['counts'] = base64.b64decode(
                ann['mask']['counts']).decode()
            mask_anno['size'] = ann['mask']['size']

            data_anno = dict(
                image_id=image_id,
                category_id=cat_id,
                bbox=[x_min, y_min, x_max - x_min, y_max - y_min],
                area=(x_max - x_min) * (y_max - y_min),
                segmentation=mask_anno,
                iscrowd=0)
            annotations.append(data_anno)

    # after process, save semantic masks
    img_filename = img_info['file_name']
    seg_filename = img_filename.replace('jpg', 'png')
    seg_filename = osp.join(seg_root, seg_filename)
    mmcv.imwrite(semseg_mask, seg_filename)
    return annotations, np.max(semseg_mask)


def export_nuim_to_coco(nuim, data_root, out_dir, extra_tag, version, nproc):
    print('Process category information')
    categories = []
    categories = [
        dict(id=nus_categories.index(cat_name), name=cat_name)
        for cat_name in nus_categories
    ]
    cat2id = {k_v['name']: k_v['id'] for k_v in categories}

    images = []
    print('Process image meta information...')
    for sample_info in mmengine.track_iter_progress(nuim.sample_data):
        if sample_info['is_key_frame']:
            img_idx = len(images)
            images.append(
                dict(
                    id=img_idx,
                    token=sample_info['token'],
                    file_name=sample_info['filename'],
                    width=sample_info['width'],
                    height=sample_info['height']))

    seg_root = f'{out_dir}semantic_masks'
    mmengine.mkdir_or_exist(seg_root)
    mmengine.mkdir_or_exist(osp.join(data_root, 'calibrated'))

    global process_img_anno

    def process_img_anno(img_info):
        single_img_annos, max_cls_id = get_img_annos(nuim, img_info, cat2id,
                                                     out_dir, data_root,
                                                     seg_root)
        return single_img_annos, max_cls_id

    print('Process img annotations...')
    if nproc > 1:
        outputs = mmengine.track_parallel_progress(
            process_img_anno, images, nproc=nproc)
    else:
        outputs = []
        for img_info in mmengine.track_iter_progress(images):
            outputs.append(process_img_anno(img_info))

    # Determine the index of object annotation
    print('Process annotation information...')
    annotations = []
    max_cls_ids = []
    for single_img_annos, max_cls_id in outputs:
        max_cls_ids.append(max_cls_id)
        for img_anno in single_img_annos:
            img_anno.update(id=len(annotations))
            annotations.append(img_anno)

    max_cls_id = max(max_cls_ids)
    print(f'Max ID of class in the semantic map: {max_cls_id}')

    coco_format_json = dict(
        images=images, annotations=annotations, categories=categories)

    mmengine.mkdir_or_exist(out_dir)
    out_file = osp.join(out_dir, f'{extra_tag}_{version}.json')
    print(f'Annotation dumped to {out_file}')
    mmengine.dump(coco_format_json, out_file)


def main():
    args = parse_args()
    for version in args.version:
        nuim = NuImages(
            dataroot=args.data_root, version=version, verbose=True, lazy=True)
        export_nuim_to_coco(nuim, args.data_root, args.out_dir, args.extra_tag,
                            version, args.nproc)


if __name__ == '__main__':
    main()