File size: 10,724 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# Copyright (c) OpenMMLab. All rights reserved.
import os
from logging import warning
from os import path as osp

import mmcv
import mmengine
import numpy as np
from lyft_dataset_sdk.lyftdataset import LyftDataset as Lyft
from pyquaternion import Quaternion

from mmdet3d.datasets.convert_utils import LyftNameMapping
from .nuscenes_converter import (get_2d_boxes, get_available_scenes,
                                 obtain_sensor2top)

lyft_categories = ('car', 'truck', 'bus', 'emergency_vehicle', 'other_vehicle',
                   'motorcycle', 'bicycle', 'pedestrian', 'animal')


def create_lyft_infos(root_path,
                      info_prefix,
                      version='v1.01-train',
                      max_sweeps=10):
    """Create info file of lyft dataset.

    Given the raw data, generate its related info file in pkl format.

    Args:
        root_path (str): Path of the data root.
        info_prefix (str): Prefix of the info file to be generated.
        version (str, optional): Version of the data.
            Default: 'v1.01-train'.
        max_sweeps (int, optional): Max number of sweeps.
            Default: 10.
    """
    lyft = Lyft(
        data_path=osp.join(root_path, version),
        json_path=osp.join(root_path, version, version),
        verbose=True)
    available_vers = ['v1.01-train', 'v1.01-test']
    assert version in available_vers
    if version == 'v1.01-train':
        train_scenes = mmengine.list_from_file('data/lyft/train.txt')
        val_scenes = mmengine.list_from_file('data/lyft/val.txt')
    elif version == 'v1.01-test':
        train_scenes = mmengine.list_from_file('data/lyft/test.txt')
        val_scenes = []
    else:
        raise ValueError('unknown')

    # filter existing scenes.
    available_scenes = get_available_scenes(lyft)
    available_scene_names = [s['name'] for s in available_scenes]
    train_scenes = list(
        filter(lambda x: x in available_scene_names, train_scenes))
    val_scenes = list(filter(lambda x: x in available_scene_names, val_scenes))
    train_scenes = set([
        available_scenes[available_scene_names.index(s)]['token']
        for s in train_scenes
    ])
    val_scenes = set([
        available_scenes[available_scene_names.index(s)]['token']
        for s in val_scenes
    ])

    test = 'test' in version
    if test:
        print(f'test scene: {len(train_scenes)}')
    else:
        print(f'train scene: {len(train_scenes)}, \
                val scene: {len(val_scenes)}')
    train_lyft_infos, val_lyft_infos = _fill_trainval_infos(
        lyft, train_scenes, val_scenes, test, max_sweeps=max_sweeps)

    metadata = dict(version=version)
    if test:
        print(f'test sample: {len(train_lyft_infos)}')
        data = dict(infos=train_lyft_infos, metadata=metadata)
        info_name = f'{info_prefix}_infos_test'
        info_path = osp.join(root_path, f'{info_name}.pkl')
        mmengine.dump(data, info_path)
    else:
        print(f'train sample: {len(train_lyft_infos)}, \
                val sample: {len(val_lyft_infos)}')
        data = dict(infos=train_lyft_infos, metadata=metadata)
        train_info_name = f'{info_prefix}_infos_train'
        info_path = osp.join(root_path, f'{train_info_name}.pkl')
        mmengine.dump(data, info_path)
        data['infos'] = val_lyft_infos
        val_info_name = f'{info_prefix}_infos_val'
        info_val_path = osp.join(root_path, f'{val_info_name}.pkl')
        mmengine.dump(data, info_val_path)


def _fill_trainval_infos(lyft,
                         train_scenes,
                         val_scenes,
                         test=False,
                         max_sweeps=10):
    """Generate the train/val infos from the raw data.

    Args:
        lyft (:obj:`LyftDataset`): Dataset class in the Lyft dataset.
        train_scenes (list[str]): Basic information of training scenes.
        val_scenes (list[str]): Basic information of validation scenes.
        test (bool, optional): Whether use the test mode. In the test mode, no
            annotations can be accessed. Default: False.
        max_sweeps (int, optional): Max number of sweeps. Default: 10.

    Returns:
        tuple[list[dict]]: Information of training set and
            validation set that will be saved to the info file.
    """
    train_lyft_infos = []
    val_lyft_infos = []

    for sample in mmengine.track_iter_progress(lyft.sample):
        lidar_token = sample['data']['LIDAR_TOP']
        sd_rec = lyft.get('sample_data', sample['data']['LIDAR_TOP'])
        cs_record = lyft.get('calibrated_sensor',
                             sd_rec['calibrated_sensor_token'])
        pose_record = lyft.get('ego_pose', sd_rec['ego_pose_token'])
        abs_lidar_path, boxes, _ = lyft.get_sample_data(lidar_token)
        # nuScenes devkit returns more convenient relative paths while
        # lyft devkit returns absolute paths
        abs_lidar_path = str(abs_lidar_path)  # absolute path
        lidar_path = abs_lidar_path.split(f'{os.getcwd()}/')[-1]
        # relative path

        mmengine.check_file_exist(lidar_path)

        info = {
            'lidar_path': lidar_path,
            'num_features': 5,
            'token': sample['token'],
            'sweeps': [],
            'cams': dict(),
            'lidar2ego_translation': cs_record['translation'],
            'lidar2ego_rotation': cs_record['rotation'],
            'ego2global_translation': pose_record['translation'],
            'ego2global_rotation': pose_record['rotation'],
            'timestamp': sample['timestamp'],
        }

        l2e_r = info['lidar2ego_rotation']
        l2e_t = info['lidar2ego_translation']
        e2g_r = info['ego2global_rotation']
        e2g_t = info['ego2global_translation']
        l2e_r_mat = Quaternion(l2e_r).rotation_matrix
        e2g_r_mat = Quaternion(e2g_r).rotation_matrix

        # obtain 6 image's information per frame
        camera_types = [
            'CAM_FRONT',
            'CAM_FRONT_RIGHT',
            'CAM_FRONT_LEFT',
            'CAM_BACK',
            'CAM_BACK_LEFT',
            'CAM_BACK_RIGHT',
        ]
        for cam in camera_types:
            cam_token = sample['data'][cam]
            cam_path, _, cam_intrinsic = lyft.get_sample_data(cam_token)
            cam_info = obtain_sensor2top(lyft, cam_token, l2e_t, l2e_r_mat,
                                         e2g_t, e2g_r_mat, cam)
            cam_info.update(cam_intrinsic=cam_intrinsic)
            info['cams'].update({cam: cam_info})

        # obtain sweeps for a single key-frame
        sd_rec = lyft.get('sample_data', sample['data']['LIDAR_TOP'])
        sweeps = []
        while len(sweeps) < max_sweeps:
            if not sd_rec['prev'] == '':
                sweep = obtain_sensor2top(lyft, sd_rec['prev'], l2e_t,
                                          l2e_r_mat, e2g_t, e2g_r_mat, 'lidar')
                sweeps.append(sweep)
                sd_rec = lyft.get('sample_data', sd_rec['prev'])
            else:
                break
        info['sweeps'] = sweeps
        # obtain annotation
        if not test:
            annotations = [
                lyft.get('sample_annotation', token)
                for token in sample['anns']
            ]
            locs = np.array([b.center for b in boxes]).reshape(-1, 3)
            dims = np.array([b.wlh for b in boxes]).reshape(-1, 3)
            rots = np.array([b.orientation.yaw_pitch_roll[0]
                             for b in boxes]).reshape(-1, 1)

            names = [b.name for b in boxes]
            for i in range(len(names)):
                if names[i] in LyftNameMapping:
                    names[i] = LyftNameMapping[names[i]]
            names = np.array(names)

            # we need to convert box size to
            # the format of our lidar coordinate system
            # which is x_size, y_size, z_size (corresponding to l, w, h)
            gt_boxes = np.concatenate([locs, dims[:, [1, 0, 2]], rots], axis=1)
            assert len(gt_boxes) == len(
                annotations), f'{len(gt_boxes)}, {len(annotations)}'
            info['gt_boxes'] = gt_boxes
            info['gt_names'] = names
            info['num_lidar_pts'] = np.array(
                [a['num_lidar_pts'] for a in annotations])
            info['num_radar_pts'] = np.array(
                [a['num_radar_pts'] for a in annotations])

        if sample['scene_token'] in train_scenes:
            train_lyft_infos.append(info)
        else:
            val_lyft_infos.append(info)

    return train_lyft_infos, val_lyft_infos


def export_2d_annotation(root_path, info_path, version):
    """Export 2d annotation from the info file and raw data.

    Args:
        root_path (str): Root path of the raw data.
        info_path (str): Path of the info file.
        version (str): Dataset version.
    """
    warning.warn('DeprecationWarning: 2D annotations are not used on the '
                 'Lyft dataset. The function export_2d_annotation will be '
                 'deprecated.')
    # get bbox annotations for camera
    camera_types = [
        'CAM_FRONT',
        'CAM_FRONT_RIGHT',
        'CAM_FRONT_LEFT',
        'CAM_BACK',
        'CAM_BACK_LEFT',
        'CAM_BACK_RIGHT',
    ]
    lyft_infos = mmengine.load(info_path)['infos']
    lyft = Lyft(
        data_path=osp.join(root_path, version),
        json_path=osp.join(root_path, version, version),
        verbose=True)
    # info_2d_list = []
    cat2Ids = [
        dict(id=lyft_categories.index(cat_name), name=cat_name)
        for cat_name in lyft_categories
    ]
    coco_ann_id = 0
    coco_2d_dict = dict(annotations=[], images=[], categories=cat2Ids)
    for info in mmengine.track_iter_progress(lyft_infos):
        for cam in camera_types:
            cam_info = info['cams'][cam]
            coco_infos = get_2d_boxes(
                lyft,
                cam_info['sample_data_token'],
                visibilities=['', '1', '2', '3', '4'])
            (height, width, _) = mmcv.imread(cam_info['data_path']).shape
            coco_2d_dict['images'].append(
                dict(
                    file_name=cam_info['data_path'],
                    id=cam_info['sample_data_token'],
                    width=width,
                    height=height))
            for coco_info in coco_infos:
                if coco_info is None:
                    continue
                # add an empty key for coco format
                coco_info['segmentation'] = []
                coco_info['id'] = coco_ann_id
                coco_2d_dict['annotations'].append(coco_info)
                coco_ann_id += 1
    mmengine.dump(coco_2d_dict, f'{info_path[:-4]}.coco.json')