File size: 1,082 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import pytest
import torch

from mmdet3d.evaluation.functional.seg_eval import seg_eval


def test_indoor_eval():
    if not torch.cuda.is_available():
        pytest.skip()
    seg_preds = [
        np.array([
            0, 0, 1, 0, 0, 2, 1, 3, 1, 2, 1, 0, 2, 2, 2, 2, 1, 3, 0, 3, 3, 4, 0
        ])
    ]
    gt_labels = [
        np.array([
            0, 0, 0, 4, 0, 0, 1, 1, 1, 4, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4
        ])
    ]

    label2cat = {
        0: 'car',
        1: 'bicycle',
        2: 'motorcycle',
        3: 'truck',
        4: 'unlabeled'
    }
    ret_value = seg_eval(gt_labels, seg_preds, label2cat, ignore_index=4)

    assert np.isclose(ret_value['car'], 0.428571429)
    assert np.isclose(ret_value['bicycle'], 0.428571429)
    assert np.isclose(ret_value['motorcycle'], 0.6666667)
    assert np.isclose(ret_value['truck'], 0.5)

    assert np.isclose(ret_value['acc'], 0.65)
    assert np.isclose(ret_value['acc_cls'], 0.65)
    assert np.isclose(ret_value['miou'], 0.50595238)