File size: 4,247 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional

import torch
from mmdet.models.losses.utils import weighted_loss
from torch import Tensor
from torch import nn as nn

from mmdet3d.models import axis_aligned_iou_loss
from mmdet3d.registry import MODELS
from mmdet3d.structures import AxisAlignedBboxOverlaps3D


@weighted_loss
def axis_aligned_diou_loss(pred: Tensor, target: Tensor) -> Tensor:
    """Calculate the DIoU loss (1-DIoU) of two sets of axis aligned bounding
    boxes. Note that predictions and targets are one-to-one corresponded.

    Args:
        pred (torch.Tensor): Bbox predictions with shape [..., 6]
            (x1, y1, z1, x2, y2, z2).
        target (torch.Tensor): Bbox targets (gt) with shape [..., 6]
            (x1, y1, z1, x2, y2, z2).

    Returns:
        torch.Tensor: DIoU loss between predictions and targets.
    """
    axis_aligned_iou = AxisAlignedBboxOverlaps3D()(
        pred, target, is_aligned=True)
    iou_loss = 1 - axis_aligned_iou

    xp1, yp1, zp1, xp2, yp2, zp2 = pred.split(1, dim=-1)
    xt1, yt1, zt1, xt2, yt2, zt2 = target.split(1, dim=-1)

    xpc = (xp1 + xp2) / 2
    ypc = (yp1 + yp2) / 2
    zpc = (zp1 + zp2) / 2
    xtc = (xt1 + xt2) / 2
    ytc = (yt1 + yt2) / 2
    ztc = (zt1 + zt2) / 2
    r2 = (xpc - xtc)**2 + (ypc - ytc)**2 + (zpc - ztc)**2

    x_min = torch.minimum(xp1, xt1)
    x_max = torch.maximum(xp2, xt2)
    y_min = torch.minimum(yp1, yt1)
    y_max = torch.maximum(yp2, yt2)
    z_min = torch.minimum(zp1, zt1)
    z_max = torch.maximum(zp2, zt2)
    c2 = (x_min - x_max)**2 + (y_min - y_max)**2 + (z_min - z_max)**2

    diou_loss = iou_loss + (r2 / c2)[:, 0]

    return diou_loss


@MODELS.register_module()
class TR3DAxisAlignedIoULoss(nn.Module):
    """Calculate the IoU loss (1-IoU) of axis aligned bounding boxes. The only
    difference with original AxisAlignedIoULoss is the addition of DIoU mode.
    These classes should be merged in the future.

    Args:
        mode (str): 'iou' for intersection over union or 'diou' for
            distance-iou loss. Defaults to 'iou'.
        reduction (str): Method to reduce losses.
            The valid reduction method are 'none', 'sum' or 'mean'.
            Defaults to 'mean'.
        loss_weight (float): Weight of loss. Defaults to 1.0.
    """

    def __init__(self,
                 mode: str = 'iou',
                 reduction: str = 'mean',
                 loss_weight: float = 1.0) -> None:
        super(TR3DAxisAlignedIoULoss, self).__init__()
        assert mode in ['iou', 'diou']
        self.loss = axis_aligned_iou_loss if mode == 'iou' \
            else axis_aligned_diou_loss
        assert reduction in ['none', 'sum', 'mean']
        self.reduction = reduction
        self.loss_weight = loss_weight

    def forward(self,
                pred: Tensor,
                target: Tensor,
                weight: Optional[Tensor] = None,
                avg_factor: Optional[float] = None,
                reduction_override: Optional[str] = None,
                **kwargs) -> Tensor:
        """Forward function of loss calculation.

        Args:
            pred (Tensor): Bbox predictions with shape [..., 3].
            target (Tensor): Bbox targets (gt) with shape [..., 3].
            weight (Tensor, optional): Weight of loss.
                Defaults to None.
            avg_factor (float, optional): Average factor that is used to
                average the loss. Defaults to None.
            reduction_override (str, optional): Method to reduce losses.
                The valid reduction method are 'none', 'sum' or 'mean'.
                Defaults to None.

        Returns:
            Tensor: IoU loss between predictions and targets.
        """
        assert reduction_override in (None, 'none', 'mean', 'sum')
        reduction = (
            reduction_override if reduction_override else self.reduction)
        if (weight is not None) and (not torch.any(weight > 0)) and (
                reduction != 'none'):
            return (pred * weight).sum()
        return self.loss(
            pred,
            target,
            weight=weight,
            avg_factor=avg_factor,
            reduction=reduction) * self.loss_weight