File size: 11,169 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <torch/types.h>

#include <ATen/cuda/CUDAApplyUtils.cuh>

typedef enum { SUM = 0, MEAN = 1, MAX = 2 } reduce_t;

#define CHECK_CUDA(x) \
  TORCH_CHECK(x.device().is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) \
  TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) \
  CHECK_CUDA(x);       \
  CHECK_CONTIGUOUS(x)

namespace {
int const threadsPerBlock = 512;
int const maxGridDim = 50000;
}  // namespace

__device__ __forceinline__ static void reduceMax(float *address, float val) {
  int *address_as_i = reinterpret_cast<int *>(address);
  int old = *address_as_i, assumed;
  do {
    assumed = old;
    old = atomicCAS(address_as_i, assumed,
                    __float_as_int(fmaxf(val, __int_as_float(assumed))));
  } while (assumed != old || __int_as_float(old) < val);
}

__device__ __forceinline__ static void reduceMax(double *address, double val) {
  unsigned long long *address_as_ull =
      reinterpret_cast<unsigned long long *>(address);
  unsigned long long old = *address_as_ull, assumed;
  do {
    assumed = old;
    old = atomicCAS(
        address_as_ull, assumed,
        __double_as_longlong(fmax(val, __longlong_as_double(assumed))));
  } while (assumed != old || __longlong_as_double(old) < val);
}

// get rid of meaningless warnings when compiling host code
#ifdef __CUDA_ARCH__
__device__ __forceinline__ static void reduceAdd(float *address, float val) {
#if (__CUDA_ARCH__ < 200)
#warning \
    "compute capability lower than 2.x. fall back to use CAS version of atomicAdd for float32"
  int *address_as_i = reinterpret_cast<int *>(address);
  int old = *address_as_i, assumed;
  do {
    assumed = old;
    old = atomicCAS(address_as_i, assumed,
                    __float_as_int(val + __int_as_float(assumed)));
  } while (assumed != old);
#else
  atomicAdd(address, val);
#endif
}

__device__ __forceinline__ static void reduceAdd(double *address, double val) {
#if (__CUDA_ARCH__ < 600)
#warning \
    "compute capability lower than 6.x. fall back to use CAS version of atomicAdd for float64"
  unsigned long long *address_as_ull =
      reinterpret_cast<unsigned long long *>(address);
  unsigned long long old = *address_as_ull, assumed;
  do {
    assumed = old;
    old = atomicCAS(address_as_ull, assumed,
                    __double_as_longlong(val + __longlong_as_double(assumed)));
  } while (assumed != old);
#else
  atomicAdd(address, val);
#endif
}
#endif

template <typename T>
__global__ void
feats_reduce_kernel(const T *feats, const int32_t *coors_map,
                    T *reduced_feats, // shall be 0 at initialization
                    const int num_input, const int num_feats,
                    const reduce_t reduce_type) {
  for (int x = blockIdx.x * blockDim.x + threadIdx.x; x < num_input;
       x += gridDim.x * blockDim.x) {
    int32_t reduce_to = coors_map[x];
    if (reduce_to == -1) continue;

    const T *feats_offset = feats + x * num_feats;
    T *reduced_feats_offset = reduced_feats + reduce_to * num_feats;
    if (reduce_type == reduce_t::MAX) {
      for (int i = 0; i < num_feats; i++) {
        reduceMax(&reduced_feats_offset[i], feats_offset[i]);
      }
    } else {
      for (int i = 0; i < num_feats; i++) {
        reduceAdd(&reduced_feats_offset[i], feats_offset[i]);
      }
    }
  }
}

template <typename T>
__global__ void add_reduce_traceback_grad_kernel(
    T *grad_feats, const T *grad_reduced_feats, const int32_t *coors_map,
    const int32_t *reduce_count, const int num_input, const int num_feats,
    const reduce_t reduce_type) {
  for (int x = blockIdx.x * blockDim.x + threadIdx.x; x < num_input;
       x += gridDim.x * blockDim.x) {
    int32_t reduce_to = coors_map[x];
    if (reduce_to == -1) {
      continue;
    }

    const int input_offset = x * num_feats;
    T *grad_feats_offset = grad_feats + input_offset;
    const int reduced_offset = reduce_to * num_feats;
    const T *grad_reduced_feats_offset = grad_reduced_feats + reduced_offset;

    if (reduce_type == reduce_t::SUM) {
      for (int i = 0; i < num_feats; i++) {
        grad_feats_offset[i] = grad_reduced_feats_offset[i];
      }
    } else if (reduce_type == reduce_t::MEAN) {
      for (int i = 0; i < num_feats; i++) {
        grad_feats_offset[i] = grad_reduced_feats_offset[i] /
                               static_cast<T>(reduce_count[reduce_to]);
      }
    }
  }
}

template <typename T>
__global__ void max_reduce_traceback_scatter_idx_kernel(
    const T *feats, const T *reduced_feats, int32_t *reduce_from,
    const int32_t *coors_map, const int num_input, const int num_feats) {
  for (int x = blockIdx.x * blockDim.x + threadIdx.x; x < num_input;
       x += gridDim.x * blockDim.x) {
    int32_t reduce_to = coors_map[x];

    const int input_offset = x * num_feats;
    const T *feats_offset = feats + input_offset;

    if (reduce_to == -1) {
      continue;
    }

    const int reduced_offset = reduce_to * num_feats;
    const T *reduced_feats_offset = reduced_feats + reduced_offset;
    int32_t *reduce_from_offset = reduce_from + reduced_offset;

    for (int i = 0; i < num_feats; i++) {
      if (feats_offset[i] == reduced_feats_offset[i]) {
        atomicMin(&reduce_from_offset[i], static_cast<int32_t>(x));
      }
    }
  }
}

template <typename T>
__global__ void max_reduce_scatter_grad_kernel(T *grad_feats,
                                               const T *grad_reduced_feats,
                                               const int32_t *reduce_from,
                                               const int num_reduced,
                                               const int num_feats) {
  for (int x = blockIdx.x * blockDim.x + threadIdx.x; x < num_reduced;
       x += gridDim.x * blockDim.x) {
    const int reduced_offset = x * num_feats;
    const int32_t *scatter_to_offset = reduce_from + reduced_offset;
    const T *grad_reduced_feats_offset = grad_reduced_feats + reduced_offset;

    for (int i = 0; i < num_feats; i++) {
      grad_feats[scatter_to_offset[i] * num_feats + i] =
          grad_reduced_feats_offset[i];
    }
  }
}

namespace voxelization {

std::vector<at::Tensor> dynamic_point_to_voxel_forward_gpu(
    const at::Tensor &feats, const at::Tensor &coors,
    const reduce_t reduce_type) {
  CHECK_INPUT(feats);
  CHECK_INPUT(coors);

  const int num_input = feats.size(0);
  const int num_feats = feats.size(1);

  if (num_input == 0)
    return {feats.clone().detach(),
            coors.clone().detach(),
            coors.new_empty({0}, torch::kInt32),
            coors.new_empty({0}, torch::kInt32)};

  at::Tensor out_coors;
  at::Tensor coors_map;
  at::Tensor reduce_count;

  auto coors_clean = coors.masked_fill(coors.lt(0).any(-1, true), -1);

  std::tie(out_coors, coors_map, reduce_count) =
      at::unique_dim(coors_clean, 0, true, true, true);

  if (out_coors.index({0, 0}).lt(0).item<bool>()) {
    // the first element of out_coors (-1,-1,-1) and should be removed
    out_coors = out_coors.slice(0, 1);
    reduce_count = reduce_count.slice(0, 1);
    coors_map = coors_map - 1;
  }

  coors_map = coors_map.to(torch::kInt32);
  reduce_count = reduce_count.to(torch::kInt32);

  auto reduced_feats =
      at::empty({out_coors.size(0), num_feats}, feats.options());

  AT_DISPATCH_FLOATING_TYPES(
      feats.scalar_type(), "feats_reduce_kernel", ([&] {
    if (reduce_type == reduce_t::MAX)
      reduced_feats.fill_(-std::numeric_limits<scalar_t>::infinity());
    else
      reduced_feats.fill_(static_cast<scalar_t>(0));

    dim3 blocks(std::min(at::cuda::ATenCeilDiv(num_input, threadsPerBlock),
                         maxGridDim));
    dim3 threads(threadsPerBlock);
    feats_reduce_kernel<<<blocks, threads>>>(
        feats.data_ptr<scalar_t>(), coors_map.data_ptr<int32_t>(),
        reduced_feats.data_ptr<scalar_t>(), num_input, num_feats, reduce_type);
    if (reduce_type == reduce_t::MEAN)
      reduced_feats /= reduce_count.unsqueeze(-1).to(reduced_feats.dtype());
  }));
  AT_CUDA_CHECK(cudaGetLastError());

  return {reduced_feats, out_coors, coors_map, reduce_count};
}

void dynamic_point_to_voxel_backward_gpu(at::Tensor &grad_feats,
                                         const at::Tensor &grad_reduced_feats,
                                         const at::Tensor &feats,
                                         const at::Tensor &reduced_feats,
                                         const at::Tensor &coors_map,
                                         const at::Tensor &reduce_count,
                                         const reduce_t reduce_type) {
  CHECK_INPUT(grad_feats);
  CHECK_INPUT(grad_reduced_feats);
  CHECK_INPUT(feats);
  CHECK_INPUT(reduced_feats);
  CHECK_INPUT(coors_map);
  CHECK_INPUT(reduce_count);

  const int num_input = feats.size(0);
  const int num_reduced = reduced_feats.size(0);
  const int num_feats = feats.size(1);

  grad_feats.fill_(0);
  // copy voxel grad to points

  if (num_input == 0 || num_reduced == 0) return;

  if (reduce_type == reduce_t::MEAN || reduce_type == reduce_t::SUM) {
    AT_DISPATCH_FLOATING_TYPES(
        grad_reduced_feats.scalar_type(), "add_reduce_traceback_grad_kernel",
        ([&] {
          dim3 blocks(std::min(
              at::cuda::ATenCeilDiv(num_input, threadsPerBlock), maxGridDim));
          dim3 threads(threadsPerBlock);
          add_reduce_traceback_grad_kernel<<<blocks, threads>>>(
              grad_feats.data_ptr<scalar_t>(),
              grad_reduced_feats.data_ptr<scalar_t>(),
              coors_map.data_ptr<int32_t>(), reduce_count.data_ptr<int32_t>(),
              num_input, num_feats, reduce_type);
        }));
    AT_CUDA_CHECK(cudaGetLastError());
  } else {
    auto reduce_from = at::full({num_reduced, num_feats}, num_input,
                                coors_map.options().dtype(torch::kInt32));
    AT_DISPATCH_FLOATING_TYPES(
        grad_reduced_feats.scalar_type(),
        "max_reduce_traceback_scatter_idx_kernel", ([&] {
          dim3 blocks(std::min(
              at::cuda::ATenCeilDiv(num_input, threadsPerBlock), maxGridDim));
          dim3 threads(threadsPerBlock);
          max_reduce_traceback_scatter_idx_kernel<<<blocks, threads>>>(
              feats.data_ptr<scalar_t>(), reduced_feats.data_ptr<scalar_t>(),
              reduce_from.data_ptr<int32_t>(), coors_map.data_ptr<int32_t>(),
              num_input, num_feats);
        }));
    AT_CUDA_CHECK(cudaGetLastError());

    AT_DISPATCH_FLOATING_TYPES(
        grad_reduced_feats.scalar_type(),
        "max_reduce_traceback_scatter_idx_kernel", ([&] {
          dim3 blocks(std::min(
              at::cuda::ATenCeilDiv(num_reduced, threadsPerBlock), maxGridDim));
          dim3 threads(threadsPerBlock);
          max_reduce_scatter_grad_kernel<<<blocks, threads>>>(
              grad_feats.data_ptr<scalar_t>(),
              grad_reduced_feats.data_ptr<scalar_t>(),
              reduce_from.data_ptr<int32_t>(), num_reduced, num_feats);
        }));
    AT_CUDA_CHECK(cudaGetLastError());
  }
  return;
}

}  // namespace voxelization