File size: 10,382 Bytes
34d1f8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
# Copyright (c) OpenMMLab. All rights reserved.
from os import path as osp
import mmengine
import numpy as np
from lyft_dataset_sdk.eval.detection.mAP_evaluation import (Box3D, get_ap,
get_class_names,
get_ious,
group_by_key,
wrap_in_box)
from mmengine.logging import print_log
from terminaltables import AsciiTable
def load_lyft_gts(lyft, data_root, eval_split, logger=None):
"""Loads ground truth boxes from database.
Args:
lyft (:obj:`LyftDataset`): Lyft class in the sdk.
data_root (str): Root of data for reading splits.
eval_split (str): Name of the split for evaluation.
logger (logging.Logger | str, optional): Logger used for printing
related information during evaluation. Default: None.
Returns:
list[dict]: List of annotation dictionaries.
"""
split_scenes = mmengine.list_from_file(
osp.join(data_root, f'{eval_split}.txt'))
# Read out all sample_tokens in DB.
sample_tokens_all = [s['token'] for s in lyft.sample]
assert len(sample_tokens_all) > 0, 'Error: Database has no samples!'
if eval_split == 'test':
# Check that you aren't trying to cheat :)
assert len(lyft.sample_annotation) > 0, \
'Error: You are trying to evaluate on the test set \
but you do not have the annotations!'
sample_tokens = []
for sample_token in sample_tokens_all:
scene_token = lyft.get('sample', sample_token)['scene_token']
scene_record = lyft.get('scene', scene_token)
if scene_record['name'] in split_scenes:
sample_tokens.append(sample_token)
all_annotations = []
print_log('Loading ground truth annotations...', logger=logger)
# Load annotations and filter predictions and annotations.
for sample_token in mmengine.track_iter_progress(sample_tokens):
sample = lyft.get('sample', sample_token)
sample_annotation_tokens = sample['anns']
for sample_annotation_token in sample_annotation_tokens:
# Get label name in detection task and filter unused labels.
sample_annotation = \
lyft.get('sample_annotation', sample_annotation_token)
detection_name = sample_annotation['category_name']
if detection_name is None:
continue
annotation = {
'sample_token': sample_token,
'translation': sample_annotation['translation'],
'size': sample_annotation['size'],
'rotation': sample_annotation['rotation'],
'name': detection_name,
}
all_annotations.append(annotation)
return all_annotations
def load_lyft_predictions(res_path):
"""Load Lyft predictions from json file.
Args:
res_path (str): Path of result json file recording detections.
Returns:
list[dict]: List of prediction dictionaries.
"""
predictions = mmengine.load(res_path)
predictions = predictions['results']
all_preds = []
for sample_token in predictions.keys():
all_preds.extend(predictions[sample_token])
return all_preds
def lyft_eval(lyft, data_root, res_path, eval_set, output_dir, logger=None):
"""Evaluation API for Lyft dataset.
Args:
lyft (:obj:`LyftDataset`): Lyft class in the sdk.
data_root (str): Root of data for reading splits.
res_path (str): Path of result json file recording detections.
eval_set (str): Name of the split for evaluation.
output_dir (str): Output directory for output json files.
logger (logging.Logger | str, optional): Logger used for printing
related information during evaluation. Default: None.
Returns:
dict[str, float]: The evaluation results.
"""
# evaluate by lyft metrics
gts = load_lyft_gts(lyft, data_root, eval_set, logger)
predictions = load_lyft_predictions(res_path)
class_names = get_class_names(gts)
print('Calculating mAP@0.5:0.95...')
iou_thresholds = [0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95]
metrics = {}
average_precisions = \
get_classwise_aps(gts, predictions, class_names, iou_thresholds)
APs_data = [['IOU', 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95]]
mAPs = np.mean(average_precisions, axis=0)
mAPs_cate = np.mean(average_precisions, axis=1)
final_mAP = np.mean(mAPs)
metrics['average_precisions'] = average_precisions.tolist()
metrics['mAPs'] = mAPs.tolist()
metrics['Final mAP'] = float(final_mAP)
metrics['class_names'] = class_names
metrics['mAPs_cate'] = mAPs_cate.tolist()
APs_data = [['class', 'mAP@0.5:0.95']]
for i in range(len(class_names)):
row = [class_names[i], round(mAPs_cate[i], 3)]
APs_data.append(row)
APs_data.append(['Overall', round(final_mAP, 3)])
APs_table = AsciiTable(APs_data, title='mAPs@0.5:0.95')
APs_table.inner_footing_row_border = True
print_log(APs_table.table, logger=logger)
res_path = osp.join(output_dir, 'lyft_metrics.json')
mmengine.dump(metrics, res_path)
return metrics
def get_classwise_aps(gt, predictions, class_names, iou_thresholds):
"""Returns an array with an average precision per class.
Note: Ground truth and predictions should have the following format.
.. code-block::
gt = [{
'sample_token': '0f0e3ce89d2324d8b45aa55a7b4f8207
fbb039a550991a5149214f98cec136ac',
'translation': [974.2811881299899, 1714.6815014457964,
-23.689857123368846],
'size': [1.796, 4.488, 1.664],
'rotation': [0.14882026466054782, 0, 0, 0.9888642620837121],
'name': 'car'
}]
predictions = [{
'sample_token': '0f0e3ce89d2324d8b45aa55a7b4f8207
fbb039a550991a5149214f98cec136ac',
'translation': [971.8343488872263, 1713.6816097857359,
-25.82534357061308],
'size': [2.519726579986132, 7.810161372666739, 3.483438286096803],
'rotation': [0.10913582721095375, 0.04099572636992043,
0.01927712319721745, 1.029328402625659],
'name': 'car',
'score': 0.3077029437237213
}]
Args:
gt (list[dict]): list of dictionaries in the format described below.
predictions (list[dict]): list of dictionaries in the format
described below.
class_names (list[str]): list of the class names.
iou_thresholds (list[float]): IOU thresholds used to calculate
TP / FN
Returns:
np.ndarray: an array with an average precision per class.
"""
assert all([0 <= iou_th <= 1 for iou_th in iou_thresholds])
gt_by_class_name = group_by_key(gt, 'name')
pred_by_class_name = group_by_key(predictions, 'name')
average_precisions = np.zeros((len(class_names), len(iou_thresholds)))
for class_id, class_name in enumerate(class_names):
if class_name in pred_by_class_name:
recalls, precisions, average_precision = get_single_class_aps(
gt_by_class_name[class_name], pred_by_class_name[class_name],
iou_thresholds)
average_precisions[class_id, :] = average_precision
return average_precisions
def get_single_class_aps(gt, predictions, iou_thresholds):
"""Compute recall and precision for all iou thresholds. Adapted from
LyftDatasetDevkit.
Args:
gt (list[dict]): list of dictionaries in the format described above.
predictions (list[dict]): list of dictionaries in the format
described below.
iou_thresholds (list[float]): IOU thresholds used to calculate
TP / FN
Returns:
tuple[np.ndarray]: Returns (recalls, precisions, average precisions)
for each class.
"""
num_gts = len(gt)
image_gts = group_by_key(gt, 'sample_token')
image_gts = wrap_in_box(image_gts)
sample_gt_checked = {
sample_token: np.zeros((len(boxes), len(iou_thresholds)))
for sample_token, boxes in image_gts.items()
}
predictions = sorted(predictions, key=lambda x: x['score'], reverse=True)
# go down dets and mark TPs and FPs
num_predictions = len(predictions)
tps = np.zeros((num_predictions, len(iou_thresholds)))
fps = np.zeros((num_predictions, len(iou_thresholds)))
for prediction_index, prediction in enumerate(predictions):
predicted_box = Box3D(**prediction)
sample_token = prediction['sample_token']
max_overlap = -np.inf
jmax = -1
if sample_token in image_gts:
gt_boxes = image_gts[sample_token]
# gt_boxes per sample
gt_checked = sample_gt_checked[sample_token]
# gt flags per sample
else:
gt_boxes = []
gt_checked = None
if len(gt_boxes) > 0:
overlaps = get_ious(gt_boxes, predicted_box)
max_overlap = np.max(overlaps)
jmax = np.argmax(overlaps)
for i, iou_threshold in enumerate(iou_thresholds):
if max_overlap > iou_threshold:
if gt_checked[jmax, i] == 0:
tps[prediction_index, i] = 1.0
gt_checked[jmax, i] = 1
else:
fps[prediction_index, i] = 1.0
else:
fps[prediction_index, i] = 1.0
# compute precision recall
fps = np.cumsum(fps, axis=0)
tps = np.cumsum(tps, axis=0)
recalls = tps / float(num_gts)
# avoid divide by zero in case the first detection
# matches a difficult ground truth
precisions = tps / np.maximum(tps + fps, np.finfo(np.float64).eps)
aps = []
for i in range(len(iou_thresholds)):
recall = recalls[:, i]
precision = precisions[:, i]
assert np.all(0 <= recall) & np.all(recall <= 1)
assert np.all(0 <= precision) & np.all(precision <= 1)
ap = get_ap(recall, precision)
aps.append(ap)
aps = np.array(aps)
return recalls, precisions, aps
|