File size: 13,153 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
# Copyright (c) OpenMMLab. All rights reserved.
#####################
# Based on https://github.com/hongzhenwang/RRPN-revise
# Licensed under The MIT License
# Author: yanyan, scrin@foxmail.com
#####################
import math

import numba
import numpy as np
from numba import cuda


@numba.jit(nopython=True)
def div_up(m, n):
    return m // n + (m % n > 0)


@cuda.jit(device=True, inline=True)
def trangle_area(a, b, c):
    return ((a[0] - c[0]) * (b[1] - c[1]) - (a[1] - c[1]) *
            (b[0] - c[0])) / 2.0


@cuda.jit(device=True, inline=True)
def area(int_pts, num_of_inter):
    area_val = 0.0
    for i in range(num_of_inter - 2):
        area_val += abs(
            trangle_area(int_pts[:2], int_pts[2 * i + 2:2 * i + 4],
                         int_pts[2 * i + 4:2 * i + 6]))
    return area_val


@cuda.jit(device=True, inline=True)
def sort_vertex_in_convex_polygon(int_pts, num_of_inter):
    if num_of_inter > 0:
        center = cuda.local.array((2, ), dtype=numba.float32)
        center[:] = 0.0
        for i in range(num_of_inter):
            center[0] += int_pts[2 * i]
            center[1] += int_pts[2 * i + 1]
        center[0] /= num_of_inter
        center[1] /= num_of_inter
        v = cuda.local.array((2, ), dtype=numba.float32)
        vs = cuda.local.array((16, ), dtype=numba.float32)
        for i in range(num_of_inter):
            v[0] = int_pts[2 * i] - center[0]
            v[1] = int_pts[2 * i + 1] - center[1]
            d = math.sqrt(v[0] * v[0] + v[1] * v[1])
            v[0] = v[0] / d
            v[1] = v[1] / d
            if v[1] < 0:
                v[0] = -2 - v[0]
            vs[i] = v[0]
        j = 0
        temp = 0
        for i in range(1, num_of_inter):
            if vs[i - 1] > vs[i]:
                temp = vs[i]
                tx = int_pts[2 * i]
                ty = int_pts[2 * i + 1]
                j = i
                while j > 0 and vs[j - 1] > temp:
                    vs[j] = vs[j - 1]
                    int_pts[j * 2] = int_pts[j * 2 - 2]
                    int_pts[j * 2 + 1] = int_pts[j * 2 - 1]
                    j -= 1

                vs[j] = temp
                int_pts[j * 2] = tx
                int_pts[j * 2 + 1] = ty


@cuda.jit(device=True, inline=True)
def line_segment_intersection(pts1, pts2, i, j, temp_pts):
    A = cuda.local.array((2, ), dtype=numba.float32)
    B = cuda.local.array((2, ), dtype=numba.float32)
    C = cuda.local.array((2, ), dtype=numba.float32)
    D = cuda.local.array((2, ), dtype=numba.float32)

    A[0] = pts1[2 * i]
    A[1] = pts1[2 * i + 1]

    B[0] = pts1[2 * ((i + 1) % 4)]
    B[1] = pts1[2 * ((i + 1) % 4) + 1]

    C[0] = pts2[2 * j]
    C[1] = pts2[2 * j + 1]

    D[0] = pts2[2 * ((j + 1) % 4)]
    D[1] = pts2[2 * ((j + 1) % 4) + 1]
    BA0 = B[0] - A[0]
    BA1 = B[1] - A[1]
    DA0 = D[0] - A[0]
    CA0 = C[0] - A[0]
    DA1 = D[1] - A[1]
    CA1 = C[1] - A[1]
    acd = DA1 * CA0 > CA1 * DA0
    bcd = (D[1] - B[1]) * (C[0] - B[0]) > (C[1] - B[1]) * (D[0] - B[0])
    if acd != bcd:
        abc = CA1 * BA0 > BA1 * CA0
        abd = DA1 * BA0 > BA1 * DA0
        if abc != abd:
            DC0 = D[0] - C[0]
            DC1 = D[1] - C[1]
            ABBA = A[0] * B[1] - B[0] * A[1]
            CDDC = C[0] * D[1] - D[0] * C[1]
            DH = BA1 * DC0 - BA0 * DC1
            Dx = ABBA * DC0 - BA0 * CDDC
            Dy = ABBA * DC1 - BA1 * CDDC
            temp_pts[0] = Dx / DH
            temp_pts[1] = Dy / DH
            return True
    return False


@cuda.jit(device=True, inline=True)
def line_segment_intersection_v1(pts1, pts2, i, j, temp_pts):
    a = cuda.local.array((2, ), dtype=numba.float32)
    b = cuda.local.array((2, ), dtype=numba.float32)
    c = cuda.local.array((2, ), dtype=numba.float32)
    d = cuda.local.array((2, ), dtype=numba.float32)

    a[0] = pts1[2 * i]
    a[1] = pts1[2 * i + 1]

    b[0] = pts1[2 * ((i + 1) % 4)]
    b[1] = pts1[2 * ((i + 1) % 4) + 1]

    c[0] = pts2[2 * j]
    c[1] = pts2[2 * j + 1]

    d[0] = pts2[2 * ((j + 1) % 4)]
    d[1] = pts2[2 * ((j + 1) % 4) + 1]

    area_abc = trangle_area(a, b, c)
    area_abd = trangle_area(a, b, d)

    if area_abc * area_abd >= 0:
        return False

    area_cda = trangle_area(c, d, a)
    area_cdb = area_cda + area_abc - area_abd

    if area_cda * area_cdb >= 0:
        return False
    t = area_cda / (area_abd - area_abc)

    dx = t * (b[0] - a[0])
    dy = t * (b[1] - a[1])
    temp_pts[0] = a[0] + dx
    temp_pts[1] = a[1] + dy
    return True


@cuda.jit(device=True, inline=True)
def point_in_quadrilateral(pt_x, pt_y, corners):
    ab0 = corners[2] - corners[0]
    ab1 = corners[3] - corners[1]

    ad0 = corners[6] - corners[0]
    ad1 = corners[7] - corners[1]

    ap0 = pt_x - corners[0]
    ap1 = pt_y - corners[1]

    abab = ab0 * ab0 + ab1 * ab1
    abap = ab0 * ap0 + ab1 * ap1
    adad = ad0 * ad0 + ad1 * ad1
    adap = ad0 * ap0 + ad1 * ap1

    return abab >= abap and abap >= 0 and adad >= adap and adap >= 0


@cuda.jit(device=True, inline=True)
def quadrilateral_intersection(pts1, pts2, int_pts):
    num_of_inter = 0
    for i in range(4):
        if point_in_quadrilateral(pts1[2 * i], pts1[2 * i + 1], pts2):
            int_pts[num_of_inter * 2] = pts1[2 * i]
            int_pts[num_of_inter * 2 + 1] = pts1[2 * i + 1]
            num_of_inter += 1
        if point_in_quadrilateral(pts2[2 * i], pts2[2 * i + 1], pts1):
            int_pts[num_of_inter * 2] = pts2[2 * i]
            int_pts[num_of_inter * 2 + 1] = pts2[2 * i + 1]
            num_of_inter += 1
    temp_pts = cuda.local.array((2, ), dtype=numba.float32)
    for i in range(4):
        for j in range(4):
            has_pts = line_segment_intersection(pts1, pts2, i, j, temp_pts)
            if has_pts:
                int_pts[num_of_inter * 2] = temp_pts[0]
                int_pts[num_of_inter * 2 + 1] = temp_pts[1]
                num_of_inter += 1

    return num_of_inter


@cuda.jit(device=True, inline=True)
def rbbox_to_corners(corners, rbbox):
    # generate clockwise corners and rotate it clockwise
    angle = rbbox[4]
    a_cos = math.cos(angle)
    a_sin = math.sin(angle)
    center_x = rbbox[0]
    center_y = rbbox[1]
    x_d = rbbox[2]
    y_d = rbbox[3]
    corners_x = cuda.local.array((4, ), dtype=numba.float32)
    corners_y = cuda.local.array((4, ), dtype=numba.float32)
    corners_x[0] = -x_d / 2
    corners_x[1] = -x_d / 2
    corners_x[2] = x_d / 2
    corners_x[3] = x_d / 2
    corners_y[0] = -y_d / 2
    corners_y[1] = y_d / 2
    corners_y[2] = y_d / 2
    corners_y[3] = -y_d / 2
    for i in range(4):
        corners[2 * i] = a_cos * corners_x[i] + a_sin * corners_y[i] + center_x
        corners[2 * i +
                1] = -a_sin * corners_x[i] + a_cos * corners_y[i] + center_y


@cuda.jit(device=True, inline=True)
def inter(rbbox1, rbbox2):
    """Compute intersection of two rotated boxes.

    Args:
        rbox1 (np.ndarray, shape=[5]): Rotated 2d box.
        rbox2 (np.ndarray, shape=[5]): Rotated 2d box.

    Returns:
        float: Intersection of two rotated boxes.
    """
    corners1 = cuda.local.array((8, ), dtype=numba.float32)
    corners2 = cuda.local.array((8, ), dtype=numba.float32)
    intersection_corners = cuda.local.array((16, ), dtype=numba.float32)

    rbbox_to_corners(corners1, rbbox1)
    rbbox_to_corners(corners2, rbbox2)

    num_intersection = quadrilateral_intersection(corners1, corners2,
                                                  intersection_corners)
    sort_vertex_in_convex_polygon(intersection_corners, num_intersection)
    # print(intersection_corners.reshape([-1, 2])[:num_intersection])

    return area(intersection_corners, num_intersection)


@cuda.jit(device=True, inline=True)
def devRotateIoUEval(rbox1, rbox2, criterion=-1):
    """Compute rotated iou on device.

    Args:
        rbox1 (np.ndarray, shape=[5]): Rotated 2d box.
        rbox2 (np.ndarray, shape=[5]): Rotated 2d box.
        criterion (int, optional): Indicate different type of iou.
            -1 indicate `area_inter / (area1 + area2 - area_inter)`,
            0 indicate `area_inter / area1`,
            1 indicate `area_inter / area2`.

    Returns:
        float: iou between two input boxes.
    """
    area1 = rbox1[2] * rbox1[3]
    area2 = rbox2[2] * rbox2[3]
    area_inter = inter(rbox1, rbox2)
    if criterion == -1:
        return area_inter / (area1 + area2 - area_inter)
    elif criterion == 0:
        return area_inter / area1
    elif criterion == 1:
        return area_inter / area2
    else:
        return area_inter


@cuda.jit(
    '(int64, int64, float32[:], float32[:], float32[:], int32)',
    fastmath=False)
def rotate_iou_kernel_eval(N,
                           K,
                           dev_boxes,
                           dev_query_boxes,
                           dev_iou,
                           criterion=-1):
    """Kernel of computing rotated IoU. This function is for bev boxes in
    camera coordinate system ONLY (the rotation is clockwise).

    Args:
        N (int): The number of boxes.
        K (int): The number of query boxes.
        dev_boxes (np.ndarray): Boxes on device.
        dev_query_boxes (np.ndarray): Query boxes on device.
        dev_iou (np.ndarray): Computed iou to return.
        criterion (int, optional): Indicate different type of iou.
            -1 indicate `area_inter / (area1 + area2 - area_inter)`,
            0 indicate `area_inter / area1`,
            1 indicate `area_inter / area2`.
    """
    threadsPerBlock = 8 * 8
    row_start = cuda.blockIdx.x
    col_start = cuda.blockIdx.y
    tx = cuda.threadIdx.x
    row_size = min(N - row_start * threadsPerBlock, threadsPerBlock)
    col_size = min(K - col_start * threadsPerBlock, threadsPerBlock)
    block_boxes = cuda.shared.array(shape=(64 * 5, ), dtype=numba.float32)
    block_qboxes = cuda.shared.array(shape=(64 * 5, ), dtype=numba.float32)

    dev_query_box_idx = threadsPerBlock * col_start + tx
    dev_box_idx = threadsPerBlock * row_start + tx
    if (tx < col_size):
        block_qboxes[tx * 5 + 0] = dev_query_boxes[dev_query_box_idx * 5 + 0]
        block_qboxes[tx * 5 + 1] = dev_query_boxes[dev_query_box_idx * 5 + 1]
        block_qboxes[tx * 5 + 2] = dev_query_boxes[dev_query_box_idx * 5 + 2]
        block_qboxes[tx * 5 + 3] = dev_query_boxes[dev_query_box_idx * 5 + 3]
        block_qboxes[tx * 5 + 4] = dev_query_boxes[dev_query_box_idx * 5 + 4]
    if (tx < row_size):
        block_boxes[tx * 5 + 0] = dev_boxes[dev_box_idx * 5 + 0]
        block_boxes[tx * 5 + 1] = dev_boxes[dev_box_idx * 5 + 1]
        block_boxes[tx * 5 + 2] = dev_boxes[dev_box_idx * 5 + 2]
        block_boxes[tx * 5 + 3] = dev_boxes[dev_box_idx * 5 + 3]
        block_boxes[tx * 5 + 4] = dev_boxes[dev_box_idx * 5 + 4]
    cuda.syncthreads()
    if tx < row_size:
        for i in range(col_size):
            offset = (
                row_start * threadsPerBlock * K + col_start * threadsPerBlock +
                tx * K + i)
            dev_iou[offset] = devRotateIoUEval(block_qboxes[i * 5:i * 5 + 5],
                                               block_boxes[tx * 5:tx * 5 + 5],
                                               criterion)


def rotate_iou_gpu_eval(boxes, query_boxes, criterion=-1, device_id=0):
    """Rotated box iou running in gpu. 500x faster than cpu version (take 5ms
    in one example with numba.cuda code). convert from [this project](
    https://github.com/hongzhenwang/RRPN-revise/tree/master/lib/rotation).

    This function is for bev boxes in camera coordinate system ONLY
    (the rotation is clockwise).

    Args:
        boxes (torch.Tensor): rbboxes. format: centers, dims,
            angles(clockwise when positive) with the shape of [N, 5].
        query_boxes (torch.FloatTensor, shape=(K, 5)):
            rbboxes to compute iou with boxes.
        device_id (int, optional): Defaults to 0. Device to use.
        criterion (int, optional): Indicate different type of iou.
            -1 indicate `area_inter / (area1 + area2 - area_inter)`,
            0 indicate `area_inter / area1`,
            1 indicate `area_inter / area2`.

    Returns:
        np.ndarray: IoU results.
    """
    boxes = boxes.astype(np.float32)
    query_boxes = query_boxes.astype(np.float32)
    N = boxes.shape[0]
    K = query_boxes.shape[0]
    iou = np.zeros((N, K), dtype=np.float32)
    if N == 0 or K == 0:
        return iou
    threadsPerBlock = 8 * 8
    cuda.select_device(device_id)
    blockspergrid = (div_up(N, threadsPerBlock), div_up(K, threadsPerBlock))

    stream = cuda.stream()
    with stream.auto_synchronize():
        boxes_dev = cuda.to_device(boxes.reshape([-1]), stream)
        query_boxes_dev = cuda.to_device(query_boxes.reshape([-1]), stream)
        iou_dev = cuda.to_device(iou.reshape([-1]), stream)
        rotate_iou_kernel_eval[blockspergrid, threadsPerBlock,
                               stream](N, K, boxes_dev, query_boxes_dev,
                                       iou_dev, criterion)
        iou_dev.copy_to_host(iou.reshape([-1]), stream=stream)
    return iou.astype(boxes.dtype)