File size: 13,722 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import warnings
from typing import Dict, List, Optional, Sequence, Union

import mmcv
import mmengine
import numpy as np
from mmengine.dataset import Compose
from mmengine.fileio import (get_file_backend, isdir, join_path,
                             list_dir_or_file)
from mmengine.infer.infer import ModelType
from mmengine.structures import InstanceData

from mmdet3d.registry import INFERENCERS
from mmdet3d.utils import ConfigType
from .base_3d_inferencer import Base3DInferencer

InstanceList = List[InstanceData]
InputType = Union[str, np.ndarray]
InputsType = Union[InputType, Sequence[InputType]]
PredType = Union[InstanceData, InstanceList]
ImgType = Union[np.ndarray, Sequence[np.ndarray]]
ResType = Union[Dict, List[Dict], InstanceData, List[InstanceData]]


@INFERENCERS.register_module(name='det3d-multi_modality')
@INFERENCERS.register_module()
class MultiModalityDet3DInferencer(Base3DInferencer):
    """The inferencer of multi-modality detection.

    Args:
        model (str, optional): Path to the config file or the model name
            defined in metafile. For example, it could be
            "pointpillars_kitti-3class" or
            "configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py". # noqa: E501
            If model is not specified, user must provide the
            `weights` saved by MMEngine which contains the config string.
            Defaults to None.
        weights (str, optional): Path to the checkpoint. If it is not specified
            and model is a model name of metafile, the weights will be loaded
            from metafile. Defaults to None.
        device (str, optional): Device to run inference. If None, the available
            device will be automatically used. Defaults to None.
        scope (str): The scope of registry. Defaults to 'mmdet3d'.
        palette (str): The palette of visualization. Defaults to 'none'.
    """

    def __init__(self,
                 model: Union[ModelType, str, None] = None,
                 weights: Optional[str] = None,
                 device: Optional[str] = None,
                 scope: str = 'mmdet3d',
                 palette: str = 'none') -> None:
        # A global counter tracking the number of frames processed, for
        # naming of the output results
        self.num_visualized_frames = 0
        super(MultiModalityDet3DInferencer, self).__init__(
            model=model,
            weights=weights,
            device=device,
            scope=scope,
            palette=palette)

    def _inputs_to_list(self,
                        inputs: Union[dict, list],
                        cam_type: str = 'CAM2',
                        **kwargs) -> list:
        """Preprocess the inputs to a list.

        Preprocess inputs to a list according to its type:

        - list or tuple: return inputs
        - dict: the value with key 'points' is
            - Directory path: return all files in the directory
            - other cases: return a list containing the string. The string
              could be a path to file, a url or other types of string according
              to the task.

        Args:
            inputs (Union[dict, list]): Inputs for the inferencer.

        Returns:
            list: List of input for the :meth:`preprocess`.
        """
        if isinstance(inputs, dict):
            assert 'infos' in inputs
            infos = inputs.pop('infos')

            if isinstance(inputs['img'], str):
                img, pcd = inputs['img'], inputs['points']
                backend = get_file_backend(img)
                if hasattr(backend, 'isdir') and isdir(img) and isdir(pcd):
                    # Backends like HttpsBackend do not implement `isdir`, so
                    # only those backends that implement `isdir` could accept
                    # the inputs as a directory
                    img_filename_list = list_dir_or_file(
                        img, list_dir=False, suffix=['.png', '.jpg'])
                    pcd_filename_list = list_dir_or_file(
                        pcd, list_dir=False, suffix='.bin')
                    assert len(img_filename_list) == len(pcd_filename_list)

                    inputs = [{
                        'img': join_path(img, img_filename),
                        'points': join_path(pcd, pcd_filename)
                    } for pcd_filename, img_filename in zip(
                        pcd_filename_list, img_filename_list)]

            if not isinstance(inputs, (list, tuple)):
                inputs = [inputs]

            # get cam2img, lidar2cam and lidar2img from infos
            info_list = mmengine.load(infos)['data_list']
            assert len(info_list) == len(inputs)
            for index, input in enumerate(inputs):
                data_info = info_list[index]
                img_path = data_info['images'][cam_type]['img_path']
                if isinstance(input['img'], str) and \
                        osp.basename(img_path) != osp.basename(input['img']):
                    raise ValueError(
                        f'the info file of {img_path} is not provided.')
                cam2img = np.asarray(
                    data_info['images'][cam_type]['cam2img'], dtype=np.float32)
                lidar2cam = np.asarray(
                    data_info['images'][cam_type]['lidar2cam'],
                    dtype=np.float32)
                if 'lidar2img' in data_info['images'][cam_type]:
                    lidar2img = np.asarray(
                        data_info['images'][cam_type]['lidar2img'],
                        dtype=np.float32)
                else:
                    lidar2img = cam2img @ lidar2cam
                input['cam2img'] = cam2img
                input['lidar2cam'] = lidar2cam
                input['lidar2img'] = lidar2img
        elif isinstance(inputs, (list, tuple)):
            # get cam2img, lidar2cam and lidar2img from infos
            for input in inputs:
                assert 'infos' in input
                infos = input.pop('infos')
                info_list = mmengine.load(infos)['data_list']
                assert len(info_list) == 1, 'Only support single sample' \
                    'info in `.pkl`, when input is a list.'
                data_info = info_list[0]
                img_path = data_info['images'][cam_type]['img_path']
                if isinstance(input['img'], str) and \
                        osp.basename(img_path) != osp.basename(input['img']):
                    raise ValueError(
                        f'the info file of {img_path} is not provided.')
                cam2img = np.asarray(
                    data_info['images'][cam_type]['cam2img'], dtype=np.float32)
                lidar2cam = np.asarray(
                    data_info['images'][cam_type]['lidar2cam'],
                    dtype=np.float32)
                if 'lidar2img' in data_info['images'][cam_type]:
                    lidar2img = np.asarray(
                        data_info['images'][cam_type]['lidar2img'],
                        dtype=np.float32)
                else:
                    lidar2img = cam2img @ lidar2cam
                input['cam2img'] = cam2img
                input['lidar2cam'] = lidar2cam
                input['lidar2img'] = lidar2img

        return list(inputs)

    def _init_pipeline(self, cfg: ConfigType) -> Compose:
        """Initialize the test pipeline."""
        pipeline_cfg = cfg.test_dataloader.dataset.pipeline

        load_point_idx = self._get_transform_idx(pipeline_cfg,
                                                 'LoadPointsFromFile')
        load_mv_img_idx = self._get_transform_idx(
            pipeline_cfg, 'LoadMultiViewImageFromFiles')
        if load_mv_img_idx != -1:
            warnings.warn(
                'LoadMultiViewImageFromFiles is not supported yet in the '
                'multi-modality inferencer. Please remove it')
        # Now, we only support ``LoadImageFromFile`` as the image loader in the
        # original piepline. `LoadMultiViewImageFromFiles` is not supported
        # yet.
        load_img_idx = self._get_transform_idx(pipeline_cfg,
                                               'LoadImageFromFile')

        if load_point_idx == -1 or load_img_idx == -1:
            raise ValueError(
                'Both LoadPointsFromFile and LoadImageFromFile must '
                'be specified the pipeline, but LoadPointsFromFile is '
                f'{load_point_idx == -1} and LoadImageFromFile is '
                f'{load_img_idx}')

        load_cfg = pipeline_cfg[load_point_idx]
        self.coord_type, self.load_dim = load_cfg['coord_type'], load_cfg[
            'load_dim']
        self.use_dim = list(range(load_cfg['use_dim'])) if isinstance(
            load_cfg['use_dim'], int) else load_cfg['use_dim']

        load_point_args = pipeline_cfg[load_point_idx]
        load_point_args.pop('type')
        load_img_args = pipeline_cfg[load_img_idx]
        load_img_args.pop('type')

        load_idx = min(load_point_idx, load_img_idx)
        pipeline_cfg.pop(max(load_point_idx, load_img_idx))

        pipeline_cfg[load_idx] = dict(
            type='MultiModalityDet3DInferencerLoader',
            load_point_args=load_point_args,
            load_img_args=load_img_args)

        return Compose(pipeline_cfg)

    def visualize(self,
                  inputs: InputsType,
                  preds: PredType,
                  return_vis: bool = False,
                  show: bool = False,
                  wait_time: int = 0,
                  draw_pred: bool = True,
                  pred_score_thr: float = 0.3,
                  no_save_vis: bool = False,
                  img_out_dir: str = '',
                  cam_type_dir: str = 'CAM2') -> Union[List[np.ndarray], None]:
        """Visualize predictions.

        Args:
            inputs (InputsType): Inputs for the inferencer.
            preds (PredType): Predictions of the model.
            return_vis (bool): Whether to return the visualization result.
                Defaults to False.
            show (bool): Whether to display the image in a popup window.
                Defaults to False.
            wait_time (float): The interval of show (s). Defaults to 0.
            draw_pred (bool): Whether to draw predicted bounding boxes.
                Defaults to True.
            no_save_vis (bool): Whether to save visualization results.
            pred_score_thr (float): Minimum score of bboxes to draw.
                Defaults to 0.3.
            img_out_dir (str): Output directory of visualization results.
                If left as empty, no file will be saved. Defaults to ''.

        Returns:
            List[np.ndarray] or None: Returns visualization results only if
            applicable.
        """
        if no_save_vis is True:
            img_out_dir = ''

        if not show and img_out_dir == '' and not return_vis:
            return None

        if getattr(self, 'visualizer') is None:
            raise ValueError('Visualization needs the "visualizer" term'
                             'defined in the config, but got None.')

        results = []

        for single_input, pred in zip(inputs, preds):
            points_input = single_input['points']
            if isinstance(points_input, str):
                pts_bytes = mmengine.fileio.get(points_input)
                points = np.frombuffer(pts_bytes, dtype=np.float32)
                points = points.reshape(-1, self.load_dim)
                points = points[:, self.use_dim]
                pc_name = osp.basename(points_input).split('.bin')[0]
                pc_name = f'{pc_name}.png'
            elif isinstance(points_input, np.ndarray):
                points = points_input.copy()
                pc_num = str(self.num_visualized_frames).zfill(8)
                pc_name = f'{pc_num}.png'
            else:
                raise ValueError('Unsupported input type: '
                                 f'{type(points_input)}')

            if img_out_dir != '' and show:
                o3d_save_path = osp.join(img_out_dir, 'vis_lidar', pc_name)
                mmengine.mkdir_or_exist(osp.dirname(o3d_save_path))
            else:
                o3d_save_path = None

            img_input = single_input['img']
            if isinstance(single_input['img'], str):
                img_bytes = mmengine.fileio.get(img_input)
                img = mmcv.imfrombytes(img_bytes)
                img = img[:, :, ::-1]
                img_name = osp.basename(img_input)
            elif isinstance(img_input, np.ndarray):
                img = img_input.copy()
                img_num = str(self.num_visualized_frames).zfill(8)
                img_name = f'{img_num}.jpg'
            else:
                raise ValueError('Unsupported input type: '
                                 f'{type(img_input)}')

            out_file = osp.join(img_out_dir, 'vis_camera', cam_type_dir,
                                img_name) if img_out_dir != '' else None

            data_input = dict(points=points, img=img)
            self.visualizer.add_datasample(
                pc_name,
                data_input,
                pred,
                show=show,
                wait_time=wait_time,
                draw_gt=False,
                draw_pred=draw_pred,
                pred_score_thr=pred_score_thr,
                o3d_save_path=o3d_save_path,
                out_file=out_file,
                vis_task='multi-modality_det',
            )
            results.append(points)
            self.num_visualized_frames += 1

        return results