gauravprasadgp commited on
Commit
e106931
·
verified ·
1 Parent(s): d9557ad

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +105 -189
README.md CHANGED
@@ -1,209 +1,125 @@
1
- ---
2
- base_model: Qwen/Qwen3-Embedding-0.6B
3
- library_name: peft
4
- tags:
5
- - base_model:adapter:Qwen/Qwen3-Embedding-0.6B
6
- - lora
7
- - transformers
8
- license: mit
9
- language:
10
- - en
11
- ---
12
-
13
- # Model Card for Model ID
14
-
15
- <!-- Provide a quick summary of what the model is/does. -->
16
-
17
-
18
 
19
  ## Model Details
20
 
21
- ### Model Description
22
-
23
- <!-- Provide a longer summary of what this model is. -->
24
-
25
-
26
-
27
- - **Developed by:** [More Information Needed]
28
- - **Funded by [optional]:** [More Information Needed]
29
- - **Shared by [optional]:** [More Information Needed]
30
- - **Model type:** [More Information Needed]
31
- - **Language(s) (NLP):** [More Information Needed]
32
- - **License:** [More Information Needed]
33
- - **Finetuned from model [optional]:** [More Information Needed]
34
-
35
- ### Model Sources [optional]
36
-
37
- <!-- Provide the basic links for the model. -->
38
-
39
- - **Repository:** [More Information Needed]
40
- - **Paper [optional]:** [More Information Needed]
41
- - **Demo [optional]:** [More Information Needed]
42
-
43
- ## Uses
44
-
45
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
-
47
- ### Direct Use
48
-
49
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
-
51
- [More Information Needed]
52
-
53
- ### Downstream Use [optional]
54
-
55
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
-
57
- [More Information Needed]
58
 
59
- ### Out-of-Scope Use
60
 
61
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
 
63
- [More Information Needed]
64
 
65
- ## Bias, Risks, and Limitations
66
 
67
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
 
69
- [More Information Needed]
 
 
 
 
70
 
71
- ### Recommendations
72
 
73
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
-
75
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
-
77
- ## How to Get Started with the Model
78
-
79
- Use the code below to get started with the model.
80
-
81
- [More Information Needed]
82
 
83
  ## Training Details
84
 
85
- ### Training Data
86
-
87
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
-
89
- [More Information Needed]
90
-
91
- ### Training Procedure
92
-
93
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
-
95
- #### Preprocessing [optional]
96
-
97
- [More Information Needed]
98
-
99
-
100
- #### Training Hyperparameters
101
-
102
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
-
104
- #### Speeds, Sizes, Times [optional]
105
-
106
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
-
108
- [More Information Needed]
109
-
110
- ## Evaluation
111
-
112
- <!-- This section describes the evaluation protocols and provides the results. -->
113
-
114
- ### Testing Data, Factors & Metrics
115
-
116
- #### Testing Data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117
 
118
- <!-- This should link to a Dataset Card if possible. -->
119
-
120
- [More Information Needed]
121
-
122
- #### Factors
123
-
124
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
-
126
- [More Information Needed]
127
-
128
- #### Metrics
129
-
130
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
-
132
- [More Information Needed]
133
-
134
- ### Results
135
-
136
- [More Information Needed]
137
-
138
- #### Summary
139
-
140
-
141
-
142
- ## Model Examination [optional]
143
-
144
- <!-- Relevant interpretability work for the model goes here -->
145
-
146
- [More Information Needed]
147
-
148
- ## Environmental Impact
149
-
150
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
-
152
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
-
154
- - **Hardware Type:** [More Information Needed]
155
- - **Hours used:** [More Information Needed]
156
- - **Cloud Provider:** [More Information Needed]
157
- - **Compute Region:** [More Information Needed]
158
- - **Carbon Emitted:** [More Information Needed]
159
-
160
- ## Technical Specifications [optional]
161
-
162
- ### Model Architecture and Objective
163
-
164
- [More Information Needed]
165
-
166
- ### Compute Infrastructure
167
-
168
- [More Information Needed]
169
-
170
- #### Hardware
171
-
172
- [More Information Needed]
173
-
174
- #### Software
175
-
176
- [More Information Needed]
177
-
178
- ## Citation [optional]
179
-
180
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
-
182
- **BibTeX:**
183
-
184
- [More Information Needed]
185
-
186
- **APA:**
187
-
188
- [More Information Needed]
189
-
190
- ## Glossary [optional]
191
-
192
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
-
194
- [More Information Needed]
195
-
196
- ## More Information [optional]
197
-
198
- [More Information Needed]
199
 
200
- ## Model Card Authors [optional]
201
 
202
- [More Information Needed]
203
 
204
- ## Model Card Contact
205
 
206
- [More Information Needed]
207
- ### Framework versions
208
 
209
- - PEFT 0.16.0
 
 
 
1
+ # Model Card: Qwen3-Embedding-0.6B Fine-tuned with LoRA
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  ## Model Details
4
 
5
+ * **Model Name:** Qwen3-Embedding-0.6B-LoRA-Fine-tuned
6
+ * **Base Model:** Qwen/Qwen3-Embedding-0.6B
7
+ * **Model Type:** Embedding Model
8
+ * **Fine-tuning Method:** Low-Rank Adaptation (LoRA)
9
+ * **Developer:** [Your Name/Organization Here]
10
+ * **Contact:** [Your Email/Contact Information Here]
11
+ * **Date:** July 13, 2025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
+ ## Model Description
14
 
15
+ This model is a fine-tuned version of the Qwen3-Embedding-0.6B model, adapted using the LoRA method. The goal of this fine-tuning was to enhance its performance on specific downstream tasks (e.g., semantic search, clustering, recommendation systems) by aligning its embeddings more closely with the characteristics of a particular dataset.
16
 
17
+ Qwen3-Embedding-0.6B is an efficient and performant embedding model from the Qwen series, designed to convert text into high-dimensional numerical vectors (embeddings) that capture semantic meaning. LoRA fine-tuning allows for efficient adaptation of large pre-trained models with minimal computational cost and storage requirements, making it ideal for targeted performance improvements without full model retraining.
18
 
19
+ ## Intended Use
20
 
21
+ This model is intended for:
22
 
23
+ * Generating high-quality text embeddings for various natural language processing (NLP) tasks.
24
+ * Semantic similarity search.
25
+ * Clustering of text data.
26
+ * Information retrieval and recommendation systems.
27
+ * As a component in larger NLP pipelines where robust text representations are required.
28
 
29
+ ## Limitations and Biases
30
 
31
+ * **Domain Specificity:** While fine-tuned, the model's performance may degrade on data significantly different from its training distribution.
32
+ * **Inherited Biases:** As it is based on a pre-trained model, it may inherit biases present in the original training data. Users should be aware of potential biases related to gender, race, religion, etc., and test for them in their specific applications.
33
+ * **Computational Resources:** While LoRA reduces resource demands for fine-tuning, inference still requires appropriate computational resources.
34
+ * **Language:** Primarily designed for [Specify Language(s) if known, e.g., English] text. Performance on other languages may vary.
 
 
 
 
 
35
 
36
  ## Training Details
37
 
38
+ * **Fine-tuning Method:** LoRA (Low-Rank Adaptation)
39
+ * **LoRA Rank (r):** [Specify LoRA rank used, e.g., 8, 16, 32]
40
+ * **LoRA Alpha (alpha):** [Specify LoRA alpha used, e.g., 16, 32, 64]
41
+ * **Target Modules for LoRA:** [Specify which modules were targeted, e.g., `q_proj`, `k_proj`, `v_proj`, `out_proj`]
42
+ * **Training Dataset:** [Brief description of your training dataset, e.g., "A proprietary dataset of customer reviews," "A collection of scientific abstracts," "Paragraphs from Wikipedia articles."]
43
+ * **Dataset Size:** [Number of samples in your training dataset]
44
+ * **Dataset Characteristics:** [Any relevant details about the dataset, e.g., "Contains highly technical language," "Focuses on conversational text," "Balanced across different topics."]
45
+ * **Training Hardware:** [e.g., NVIDIA A100 GPU, Google Cloud TPU v3]
46
+ * **Training Time:** [e.g., 4 hours, 2 days]
47
+ * **Optimization Strategy:** [e.g., AdamW, learning rate schedule]
48
+ * **Software Frameworks:** [e.g., PyTorch, Hugging Face Transformers, PEFT library]
49
+
50
+ ## Performance Metrics
51
+
52
+ *(Note: Provide actual metrics from your evaluation. Examples below are placeholders.)*
53
+
54
+ * **Evaluation Dataset:** [Brief description of your evaluation dataset]
55
+ * **Metric 1 (e.g., Average Precision @ K):** [Value] (e.g., 0.85)
56
+ * **Metric 2 (e.g., Recall @ K):** [Value] (e.g., 0.92)
57
+ * **Metric 3 (e.g., Cosine Similarity Distribution):** [Description or relevant statistics]
58
+ * **Comparison to Base Model (if available):** [e.g., "This fine-tuned model showed a 15% improvement in Average Precision @ 10 compared to the base Qwen3-Embedding-0.6B model on our internal benchmark."]
59
+
60
+ ## Usage
61
+
62
+ You can load and use this model with the Hugging Face `transformers` and `peft` libraries.
63
+
64
+ ```python
65
+ from transformers import AutoModelForCausalLM, AutoTokenizer
66
+ from peft import PeftModel, PeftConfig
67
+ import torch
68
+
69
+ # Replace with the actual path or Hugging Face Hub ID if uploaded
70
+ model_id = "your_username/your_fine_tuned_qwen_embedding_model" # Example: "my_org/qwen3-embedding-0.6b-lora"
71
+ config = PeftConfig.from_pretrained(model_id)
72
+ base_model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
73
+ tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path, trust_remote_code=True)
74
+ model = PeftModel.from_pretrained(base_model, model_id)
75
+
76
+ # Example usage for generating embeddings (adjust for your specific model's embedding API)
77
+ def get_embedding(text):
78
+ inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=512)
79
+ with torch.no_grad():
80
+ outputs = model(**inputs)
81
+ # Assuming the embedding is the last hidden state of the [CLS] token or averaged
82
+ # You might need to adjust this based on how Qwen3-Embedding-0.6B produces embeddings
83
+ # For many embedding models, it's typically a pooling operation
84
+ # Example: Mean pooling of last hidden states
85
+ embeddings = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
86
+ return embeddings
87
+
88
+ # Test
89
+ text_example = "This is a sample sentence for embedding."
90
+ embedding = get_embedding(text_example)
91
+ print(embedding.shape)
92
+
93
+ ## Citation
94
+
95
+ If you use this fine-tuned model in your research or application, please consider citing the original **Qwen/Qwen3-Embedding-0.6B** paper (if available) and acknowledge this fine-tuned version.
96
+
97
+ ```bibtex
98
+ @article{Qwen3Embedding,
99
+ title={Qwen-Embedding: A Family of Embedding Models},
100
+ author={[Authors of Qwen3-Embedding-0.6B]},
101
+ journal={arXiv preprint arXiv:XXXX.XXXXX}, % Replace with actual arXiv ID if available
102
+ year={202X} % Replace with actual year
103
+ }
104
+
105
+ % And if applicable, for your fine-tuning:
106
+ @misc{your_finetuned_model,
107
+ title={Qwen3-Embedding-0.6B Fine-tuned with LoRA for [Your Application]},
108
+ author={[Your Name/Organization]},
109
+ year={2025},
110
+ note={Available at [Link to your model if uploaded]}
111
+ }
112
 
113
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114
 
115
+ ## License
116
 
117
+ This fine-tuned model inherits the license of the original **Qwen/Qwen3-Embedding-0.6B** model. Please refer to the [original model's license]([Link to original model's license, e.g., Hugging Face model page]) for details.
118
 
119
+ ---
120
 
121
+ ## Acknowledgements
 
122
 
123
+ * The developers of **Qwen/Qwen3-Embedding-0.6B** for providing the base model.
124
+ * The developers of the **PEFT** library for enabling efficient LoRA fine-tuning.
125
+ * [Any other relevant acknowledgements, e.g., dataset creators, funding bodies]