--- library_name: transformers license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer model-index: - name: mdeberta-semeval25_narratives_fold3 results: [] --- # mdeberta-semeval25_narratives_fold3 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.2072 - Precision Samples: 0.3215 - Recall Samples: 0.7807 - F1 Samples: 0.4308 - Precision Macro: 0.6748 - Recall Macro: 0.4927 - F1 Macro: 0.2710 - Precision Micro: 0.2999 - Recall Micro: 0.7380 - F1 Micro: 0.4264 - Precision Weighted: 0.4569 - Recall Weighted: 0.7380 - F1 Weighted: 0.3669 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 5.6486 | 1.0 | 19 | 5.3336 | 0.3483 | 0.1721 | 0.1761 | 0.9485 | 0.1103 | 0.0885 | 0.2808 | 0.1513 | 0.1966 | 0.8757 | 0.1513 | 0.0961 | | 5.1546 | 2.0 | 38 | 5.1500 | 0.2167 | 0.4798 | 0.2793 | 0.8504 | 0.2332 | 0.1144 | 0.2138 | 0.4244 | 0.2843 | 0.6587 | 0.4244 | 0.1537 | | 4.8699 | 3.0 | 57 | 4.9488 | 0.2564 | 0.5453 | 0.3324 | 0.7640 | 0.2641 | 0.1615 | 0.2495 | 0.4649 | 0.3247 | 0.5390 | 0.4649 | 0.2268 | | 4.5166 | 4.0 | 76 | 4.6712 | 0.2862 | 0.6829 | 0.3830 | 0.7666 | 0.3645 | 0.1962 | 0.2768 | 0.6089 | 0.3806 | 0.5521 | 0.6089 | 0.2853 | | 4.6349 | 5.0 | 95 | 4.4841 | 0.3041 | 0.7471 | 0.4094 | 0.7060 | 0.4314 | 0.2415 | 0.2890 | 0.6900 | 0.4074 | 0.4760 | 0.6900 | 0.3405 | | 4.4166 | 6.0 | 114 | 4.3419 | 0.3141 | 0.7724 | 0.4210 | 0.7013 | 0.4581 | 0.2433 | 0.2912 | 0.7232 | 0.4153 | 0.4724 | 0.7232 | 0.3455 | | 3.9808 | 7.0 | 133 | 4.2831 | 0.3158 | 0.7755 | 0.4256 | 0.6779 | 0.4803 | 0.2690 | 0.2942 | 0.7306 | 0.4195 | 0.4555 | 0.7306 | 0.3618 | | 4.051 | 8.0 | 152 | 4.2851 | 0.3114 | 0.7416 | 0.4174 | 0.6723 | 0.4709 | 0.2650 | 0.2961 | 0.7048 | 0.4170 | 0.4528 | 0.7048 | 0.3579 | | 4.0759 | 9.0 | 171 | 4.2030 | 0.3236 | 0.7830 | 0.4340 | 0.6801 | 0.4942 | 0.2758 | 0.3009 | 0.7417 | 0.4281 | 0.4611 | 0.7417 | 0.3710 | | 4.3531 | 10.0 | 190 | 4.2072 | 0.3215 | 0.7807 | 0.4308 | 0.6748 | 0.4927 | 0.2710 | 0.2999 | 0.7380 | 0.4264 | 0.4569 | 0.7380 | 0.3669 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1