LSTM Text Generation Model
This model was trained using TensorFlow/Keras for financial article generation tasks.
Model Details
- Model Type: LSTM
- Framework: TensorFlow/Keras
- Task: Text Generation
- Vocabulary Size: 41376
- Architecture: Long Short-Term Memory (LSTM)
Usage
from huggingface_hub import snapshot_download
import tensorflow as tf
import json
import pickle
import numpy as np
# Download model files
model_path = snapshot_download(repo_id="firobeid/L4_LSTM_financial_article_generator")
# Load the LSTM model
model = tf.keras.models.load_model(f"{model_path}/lstm_model")
# Load tokenizer
try:
# Try JSON format first
with open(f"{model_path}/tokenizer.json", 'r', encoding='utf-8') as f:
tokenizer_json = f.read()
tokenizer = tf.keras.preprocessing.text.tokenizer_from_json(tokenizer_json)
except FileNotFoundError:
# Fallback to pickle format
with open(f"{model_path}/tokenizer.pkl", 'rb') as f:
tokenizer = pickle.load(f)
# Text generation function
def generate_text(input_text, num_words=10):
# Preprocess input
X = np.array(tokenizer.texts_to_sequences([input_text])) - 1
# Generate predictions
output_text = []
for i in range(num_words):
y_proba = model.predict(X, verbose=0)[0]
pred_word_ind = np.argmax(y_proba, axis=-1) + 1
pred_word = tokenizer.index_word[pred_word_ind[-1]]
input_text += ' ' + pred_word
output_text.append(pred_word)
X = np.array(tokenizer.texts_to_sequences([input_text])) - 1
return ' '.join(output_text)
# Example usage
# Start with these tags: <business>, <entertainment>, <politics>, <sport>, <tech>
result = generate_text("<tech> The future of artificial intelligence", num_words=15)
print(result)
Training
This model was trained on text data using LSTM architecture for next-word prediction.
Limitations
- Model performance depends on training data quality and size
- Generated text may not always be coherent for longer sequences
- Model architecture is optimized for the specific vocabulary it was trained on
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support