Duplicate from apple/DFN5B-CLIP-ViT-H-14-378
Browse filesCo-authored-by: Alex Fang <apf1@users.noreply.huggingface.co>
- .gitattributes +35 -0
- LICENSE +88 -0
- README.md +108 -0
- config.json +165 -0
- eval_results.jsonl +40 -0
- merges.txt +0 -0
- open_clip_config.json +34 -0
- open_clip_pytorch_model.bin +3 -0
- preprocessor_config.json +19 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +24 -0
- tokenizer.json +0 -0
- tokenizer_config.json +34 -0
- vocab.json +0 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
LICENSE
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Disclaimer: IMPORTANT: This Apple Machine Learning Research Model is
|
2 |
+
specifically developed and released by Apple Inc. ("Apple") for the sole purpose
|
3 |
+
of scientific research of artificial intelligence and machine-learning
|
4 |
+
technology. “Apple Machine Learning Research Model” means the model, including
|
5 |
+
but not limited to algorithms, formulas, trained model weights, parameters,
|
6 |
+
configurations, checkpoints, and any related materials (including
|
7 |
+
documentation).
|
8 |
+
|
9 |
+
This Apple Machine Learning Research Model is provided to You by
|
10 |
+
Apple in consideration of your agreement to the following terms, and your use,
|
11 |
+
modification, creation of Model Derivatives, and or redistribution of the Apple
|
12 |
+
Machine Learning Research Model constitutes acceptance of this Agreement. If You
|
13 |
+
do not agree with these terms, please do not use, modify, create Model
|
14 |
+
Derivatives of, or distribute this Apple Machine Learning Research Model or
|
15 |
+
Model Derivatives.
|
16 |
+
|
17 |
+
* License Scope: In consideration of your agreement to abide by the following
|
18 |
+
terms, and subject to these terms, Apple hereby grants you a personal,
|
19 |
+
non-exclusive, worldwide, non-transferable, royalty-free, revocable, and
|
20 |
+
limited license, to use, copy, modify, distribute, and create Model
|
21 |
+
Derivatives (defined below) of the Apple Machine Learning Research Model
|
22 |
+
exclusively for Research Purposes. You agree that any Model Derivatives You
|
23 |
+
may create or that may be created for You will be limited to Research Purposes
|
24 |
+
as well. “Research Purposes” means non-commercial scientific research and
|
25 |
+
academic development activities, such as experimentation, analysis, testing
|
26 |
+
conducted by You with the sole intent to advance scientific knowledge and
|
27 |
+
research. “Research Purposes” does not include any commercial exploitation,
|
28 |
+
product development or use in any commercial product or service.
|
29 |
+
|
30 |
+
* Distribution of Apple Machine Learning Research Model and Model Derivatives:
|
31 |
+
If you choose to redistribute Apple Machine Learning Research Model or its
|
32 |
+
Model Derivatives, you must provide a copy of this Agreement to such third
|
33 |
+
party, and ensure that the following attribution notice be provided: “Apple
|
34 |
+
Machine Learning Research Model is licensed under the Apple Machine Learning
|
35 |
+
Research Model License Agreement.” Additionally, all Model Derivatives must
|
36 |
+
clearly be identified as such, including disclosure of modifications and
|
37 |
+
changes made to the Apple Machine Learning Research Model. The name,
|
38 |
+
trademarks, service marks or logos of Apple may not be used to endorse or
|
39 |
+
promote Model Derivatives or the relationship between You and Apple. “Model
|
40 |
+
Derivatives” means any models or any other artifacts created by modifications,
|
41 |
+
improvements, adaptations, alterations to the architecture, algorithm or
|
42 |
+
training processes of the Apple Machine Learning Research Model, or by any
|
43 |
+
retraining, fine-tuning of the Apple Machine Learning Research Model.
|
44 |
+
|
45 |
+
* No Other License: Except as expressly stated in this notice, no other rights
|
46 |
+
or licenses, express or implied, are granted by Apple herein, including but
|
47 |
+
not limited to any patent, trademark, and similar intellectual property rights
|
48 |
+
worldwide that may be infringed by the Apple Machine Learning Research Model,
|
49 |
+
the Model Derivatives or by other works in which the Apple Machine Learning
|
50 |
+
Research Model may be incorporated.
|
51 |
+
|
52 |
+
* Compliance with Laws: Your use of Apple Machine Learning Research Model must
|
53 |
+
be in compliance with all applicable laws and regulations.
|
54 |
+
|
55 |
+
* Term and Termination: The term of this Agreement will begin upon your
|
56 |
+
acceptance of this Agreement or use of the Apple Machine Learning Research
|
57 |
+
Model and will continue until terminated in accordance with the following
|
58 |
+
terms. Apple may terminate this Agreement at any time if You are in breach of
|
59 |
+
any term or condition of this Agreement. Upon termination of this Agreement,
|
60 |
+
You must cease to use all Apple Machine Learning Research Models and Model
|
61 |
+
Derivatives and permanently delete any copy thereof. Sections 3, 6 and 7 will
|
62 |
+
survive termination.
|
63 |
+
|
64 |
+
* Disclaimer and Limitation of Liability: This Apple Machine Learning Research
|
65 |
+
Model and any outputs generated by the Apple Machine Learning Research Model
|
66 |
+
are provided on an “AS IS” basis. APPLE MAKES NO WARRANTIES, EXPRESS OR
|
67 |
+
IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF
|
68 |
+
NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
|
69 |
+
REGARDING THE APPLE MACHINE LEARNING RESEARCH MODEL OR OUTPUTS GENERATED BY
|
70 |
+
THE APPLE MACHINE LEARNING RESEARCH MODEL. You are solely responsible for
|
71 |
+
determining the appropriateness of using or redistributing the Apple Machine
|
72 |
+
Learning Research Model and any outputs of the Apple Machine Learning Research
|
73 |
+
Model and assume any risks associated with Your use of the Apple Machine
|
74 |
+
Learning Research Model and any output and results. IN NO EVENT SHALL APPLE BE
|
75 |
+
LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
|
76 |
+
IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF
|
77 |
+
THE APPLE MACHINE LEARNING RESEARCH MODEL AND ANY OUTPUTS OF THE APPLE MACHINE
|
78 |
+
LEARNING RESEARCH MODEL, HOWEVER CAUSED AND WHETHER UNDER THEORY OF CONTRACT,
|
79 |
+
TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN IF APPLE HAS
|
80 |
+
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
81 |
+
|
82 |
+
* Governing Law: This Agreement will be governed by and construed under the laws
|
83 |
+
of the State of California without regard to its choice of law principles. The
|
84 |
+
Convention on Contracts for the International Sale of Goods shall not apply to
|
85 |
+
the Agreement except that the arbitration clause and any arbitration hereunder
|
86 |
+
shall be governed by the Federal Arbitration Act, Chapters 1 and 2.
|
87 |
+
|
88 |
+
Copyright (C) 2025 Apple Inc. All Rights Reserved.
|
README.md
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apple-amlr
|
3 |
+
license_name: apple-sample-code-license
|
4 |
+
license_link: LICENSE
|
5 |
+
---
|
6 |
+
A CLIP (Contrastive Language-Image Pre-training) model trained on DFN-5B.
|
7 |
+
Data Filtering Networks (DFNs) are small networks used to automatically filter large pools of uncurated data.
|
8 |
+
This model was trained on 5B images that were filtered from a pool of 43B uncurated image-text pairs
|
9 |
+
(12.8B image-text pairs from CommonPool-12.8B + 30B additional public image-text pairs).
|
10 |
+
|
11 |
+
This model has been converted to PyTorch from the original JAX checkpoints from Axlearn (https://github.com/apple/axlearn).
|
12 |
+
These weights are directly usable in OpenCLIP (image + text).
|
13 |
+
|
14 |
+
|
15 |
+
## Model Details
|
16 |
+
|
17 |
+
- **Model Type:** Contrastive Image-Text, Zero-Shot Image Classification.
|
18 |
+
- **Dataset:** DFN-5b
|
19 |
+
- **Papers:**
|
20 |
+
- Data Filtering Networks: https://arxiv.org/abs/2309.17425
|
21 |
+
- **Samples Seen:** 39B (224 x 224) + 5B (384 x 384)
|
22 |
+
## Model Metrics
|
23 |
+
| dataset | metric |
|
24 |
+
|:-----------------------|---------:|
|
25 |
+
| ImageNet 1k | 0.84218 |
|
26 |
+
| Caltech-101 | 0.954479 |
|
27 |
+
| CIFAR-10 | 0.9879 |
|
28 |
+
| CIFAR-100 | 0.9041 |
|
29 |
+
| CLEVR Counts | 0.362467 |
|
30 |
+
| CLEVR Distance | 0.206067 |
|
31 |
+
| Country211 | 0.37673 |
|
32 |
+
| Describable Textures | 0.71383 |
|
33 |
+
| EuroSAT | 0.608333 |
|
34 |
+
| FGVC Aircraft | 0.719938 |
|
35 |
+
| Food-101 | 0.963129 |
|
36 |
+
| GTSRB | 0.679018 |
|
37 |
+
| ImageNet Sketch | 0.73338 |
|
38 |
+
| ImageNet v2 | 0.7837 |
|
39 |
+
| ImageNet-A | 0.7992 |
|
40 |
+
| ImageNet-O | 0.3785 |
|
41 |
+
| ImageNet-R | 0.937633 |
|
42 |
+
| KITTI Vehicle Distance | 0.38256 |
|
43 |
+
| MNIST | 0.8372 |
|
44 |
+
| ObjectNet <sup>1</sup> | 0.796867 |
|
45 |
+
| Oxford Flowers-102 | 0.896834 |
|
46 |
+
| Oxford-IIIT Pet | 0.966841 |
|
47 |
+
| Pascal VOC 2007 | 0.826255 |
|
48 |
+
| PatchCamelyon | 0.695953 |
|
49 |
+
| Rendered SST2 | 0.566722 |
|
50 |
+
| RESISC45 | 0.755079 |
|
51 |
+
| Stanford Cars | 0.959955 |
|
52 |
+
| STL-10 | 0.991125 |
|
53 |
+
| SUN397 | 0.772799 |
|
54 |
+
| SVHN | 0.671251 |
|
55 |
+
| Flickr | 0.8808 |
|
56 |
+
| MSCOCO | 0.636889 |
|
57 |
+
| WinoGAViL | 0.571813 |
|
58 |
+
| iWildCam | 0.224911 |
|
59 |
+
| Camelyon17 | 0.711536 |
|
60 |
+
| FMoW | 0.209024 |
|
61 |
+
| Dollar Street | 0.71729 |
|
62 |
+
| GeoDE | 0.935699 |
|
63 |
+
| **Average** | **0.709421** |
|
64 |
+
|
65 |
+
|
66 |
+
[1]: Center-crop pre-processing used for ObjectNet (squashing results in lower accuracy of 0.737)
|
67 |
+
## Model Usage
|
68 |
+
### With OpenCLIP
|
69 |
+
```
|
70 |
+
import torch
|
71 |
+
import torch.nn.functional as F
|
72 |
+
from urllib.request import urlopen
|
73 |
+
from PIL import Image
|
74 |
+
from open_clip import create_model_from_pretrained, get_tokenizer
|
75 |
+
|
76 |
+
model, preprocess = create_model_from_pretrained('hf-hub:apple/DFN5B-CLIP-ViT-H-14-384')
|
77 |
+
tokenizer = get_tokenizer('ViT-H-14')
|
78 |
+
|
79 |
+
image = Image.open(urlopen(
|
80 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
81 |
+
))
|
82 |
+
image = preprocess(image).unsqueeze(0)
|
83 |
+
|
84 |
+
labels_list = ["a dog", "a cat", "a donut", "a beignet"]
|
85 |
+
text = tokenizer(labels_list, context_length=model.context_length)
|
86 |
+
|
87 |
+
with torch.no_grad(), torch.cuda.amp.autocast():
|
88 |
+
image_features = model.encode_image(image)
|
89 |
+
text_features = model.encode_text(text)
|
90 |
+
image_features = F.normalize(image_features, dim=-1)
|
91 |
+
text_features = F.normalize(text_features, dim=-1)
|
92 |
+
|
93 |
+
text_probs = torch.sigmoid(image_features @ text_features.T * model.logit_scale.exp() + model.logit_bias)
|
94 |
+
|
95 |
+
zipped_list = list(zip(labels_list, [round(p.item(), 3) for p in text_probs[0]]))
|
96 |
+
print("Label probabilities: ", zipped_list)
|
97 |
+
```
|
98 |
+
|
99 |
+
## Citation
|
100 |
+
```bibtex
|
101 |
+
@article{fang2023data,
|
102 |
+
title={Data Filtering Networks},
|
103 |
+
author={Fang, Alex and Jose, Albin Madappally and Jain, Amit and Schmidt, Ludwig and Toshev, Alexander and Shankar, Vaishaal},
|
104 |
+
journal={arXiv preprint arXiv:2309.17425},
|
105 |
+
year={2023}
|
106 |
+
}
|
107 |
+
|
108 |
+
```
|
config.json
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_commit_hash": null,
|
3 |
+
"architectures": [
|
4 |
+
"CLIPModel"
|
5 |
+
],
|
6 |
+
"initializer_factor": 1.0,
|
7 |
+
"logit_scale_init_value": 2.6592,
|
8 |
+
"model_type": "clip",
|
9 |
+
"projection_dim": 1024,
|
10 |
+
"text_config": {
|
11 |
+
"_name_or_path": "",
|
12 |
+
"add_cross_attention": false,
|
13 |
+
"architectures": null,
|
14 |
+
"attention_dropout": 0.0,
|
15 |
+
"bad_words_ids": null,
|
16 |
+
"begin_suppress_tokens": null,
|
17 |
+
"bos_token_id": 0,
|
18 |
+
"chunk_size_feed_forward": 0,
|
19 |
+
"cross_attention_hidden_size": null,
|
20 |
+
"decoder_start_token_id": null,
|
21 |
+
"diversity_penalty": 0.0,
|
22 |
+
"do_sample": false,
|
23 |
+
"early_stopping": false,
|
24 |
+
"encoder_no_repeat_ngram_size": 0,
|
25 |
+
"eos_token_id": 49407,
|
26 |
+
"exponential_decay_length_penalty": null,
|
27 |
+
"finetuning_task": null,
|
28 |
+
"forced_bos_token_id": null,
|
29 |
+
"forced_eos_token_id": null,
|
30 |
+
"hidden_act": "quick_gelu",
|
31 |
+
"hidden_size": 1024,
|
32 |
+
"id2label": {
|
33 |
+
"0": "LABEL_0",
|
34 |
+
"1": "LABEL_1"
|
35 |
+
},
|
36 |
+
"initializer_factor": 1.0,
|
37 |
+
"initializer_range": 0.02,
|
38 |
+
"intermediate_size": 4096,
|
39 |
+
"is_decoder": false,
|
40 |
+
"is_encoder_decoder": false,
|
41 |
+
"label2id": {
|
42 |
+
"LABEL_0": 0,
|
43 |
+
"LABEL_1": 1
|
44 |
+
},
|
45 |
+
"layer_norm_eps": 1e-05,
|
46 |
+
"length_penalty": 1.0,
|
47 |
+
"max_length": 20,
|
48 |
+
"max_position_embeddings": 77,
|
49 |
+
"min_length": 0,
|
50 |
+
"model_type": "clip_text_model",
|
51 |
+
"no_repeat_ngram_size": 0,
|
52 |
+
"num_attention_heads": 16,
|
53 |
+
"num_beam_groups": 1,
|
54 |
+
"num_beams": 1,
|
55 |
+
"num_hidden_layers": 24,
|
56 |
+
"num_return_sequences": 1,
|
57 |
+
"output_attentions": false,
|
58 |
+
"output_hidden_states": false,
|
59 |
+
"output_scores": false,
|
60 |
+
"pad_token_id": 49408,
|
61 |
+
"prefix": null,
|
62 |
+
"problem_type": null,
|
63 |
+
"projection_dim": 512,
|
64 |
+
"pruned_heads": {},
|
65 |
+
"remove_invalid_values": false,
|
66 |
+
"repetition_penalty": 1.0,
|
67 |
+
"return_dict": true,
|
68 |
+
"return_dict_in_generate": false,
|
69 |
+
"sep_token_id": null,
|
70 |
+
"suppress_tokens": null,
|
71 |
+
"task_specific_params": null,
|
72 |
+
"temperature": 1.0,
|
73 |
+
"tf_legacy_loss": false,
|
74 |
+
"tie_encoder_decoder": false,
|
75 |
+
"tie_word_embeddings": true,
|
76 |
+
"tokenizer_class": null,
|
77 |
+
"top_k": 50,
|
78 |
+
"top_p": 1.0,
|
79 |
+
"torch_dtype": null,
|
80 |
+
"torchscript": false,
|
81 |
+
"transformers_version": "4.27.1",
|
82 |
+
"typical_p": 1.0,
|
83 |
+
"use_bfloat16": false,
|
84 |
+
"vocab_size": 49409
|
85 |
+
},
|
86 |
+
"torch_dtype": "float32",
|
87 |
+
"transformers_version": null,
|
88 |
+
"vision_config": {
|
89 |
+
"_name_or_path": "",
|
90 |
+
"add_cross_attention": false,
|
91 |
+
"architectures": null,
|
92 |
+
"attention_dropout": 0.0,
|
93 |
+
"bad_words_ids": null,
|
94 |
+
"begin_suppress_tokens": null,
|
95 |
+
"bos_token_id": null,
|
96 |
+
"chunk_size_feed_forward": 0,
|
97 |
+
"cross_attention_hidden_size": null,
|
98 |
+
"decoder_start_token_id": null,
|
99 |
+
"diversity_penalty": 0.0,
|
100 |
+
"do_sample": false,
|
101 |
+
"early_stopping": false,
|
102 |
+
"encoder_no_repeat_ngram_size": 0,
|
103 |
+
"eos_token_id": null,
|
104 |
+
"exponential_decay_length_penalty": null,
|
105 |
+
"finetuning_task": null,
|
106 |
+
"forced_bos_token_id": null,
|
107 |
+
"forced_eos_token_id": null,
|
108 |
+
"hidden_act": "quick_gelu",
|
109 |
+
"hidden_size": 1280,
|
110 |
+
"id2label": {
|
111 |
+
"0": "LABEL_0",
|
112 |
+
"1": "LABEL_1"
|
113 |
+
},
|
114 |
+
"image_size": 378,
|
115 |
+
"initializer_factor": 1.0,
|
116 |
+
"initializer_range": 0.02,
|
117 |
+
"intermediate_size": 5120,
|
118 |
+
"is_decoder": false,
|
119 |
+
"is_encoder_decoder": false,
|
120 |
+
"label2id": {
|
121 |
+
"LABEL_0": 0,
|
122 |
+
"LABEL_1": 1
|
123 |
+
},
|
124 |
+
"layer_norm_eps": 1e-05,
|
125 |
+
"length_penalty": 1.0,
|
126 |
+
"max_length": 20,
|
127 |
+
"min_length": 0,
|
128 |
+
"model_type": "clip_vision_model",
|
129 |
+
"no_repeat_ngram_size": 0,
|
130 |
+
"num_attention_heads": 16,
|
131 |
+
"num_beam_groups": 1,
|
132 |
+
"num_beams": 1,
|
133 |
+
"num_channels": 3,
|
134 |
+
"num_hidden_layers": 32,
|
135 |
+
"num_return_sequences": 1,
|
136 |
+
"output_attentions": false,
|
137 |
+
"output_hidden_states": false,
|
138 |
+
"output_scores": false,
|
139 |
+
"pad_token_id": null,
|
140 |
+
"patch_size": 14,
|
141 |
+
"prefix": null,
|
142 |
+
"problem_type": null,
|
143 |
+
"projection_dim": 512,
|
144 |
+
"pruned_heads": {},
|
145 |
+
"remove_invalid_values": false,
|
146 |
+
"repetition_penalty": 1.0,
|
147 |
+
"return_dict": true,
|
148 |
+
"return_dict_in_generate": false,
|
149 |
+
"sep_token_id": null,
|
150 |
+
"suppress_tokens": null,
|
151 |
+
"task_specific_params": null,
|
152 |
+
"temperature": 1.0,
|
153 |
+
"tf_legacy_loss": false,
|
154 |
+
"tie_encoder_decoder": false,
|
155 |
+
"tie_word_embeddings": true,
|
156 |
+
"tokenizer_class": null,
|
157 |
+
"top_k": 50,
|
158 |
+
"top_p": 1.0,
|
159 |
+
"torch_dtype": null,
|
160 |
+
"torchscript": false,
|
161 |
+
"transformers_version": "4.27.1",
|
162 |
+
"typical_p": 1.0,
|
163 |
+
"use_bfloat16": false
|
164 |
+
}
|
165 |
+
}
|
eval_results.jsonl
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"key": "imagenet1k", "dataset": "ImageNet 1k", "metrics": {"acc1": 0.84218, "acc5": 0.97496, "mean_per_class_recall": 0.84218, "main_metric": 0.84218}}
|
2 |
+
{"key": "vtab/caltech101", "dataset": "Caltech-101", "metrics": {"acc1": 0.8547247329498767, "acc5": 0.9406737880032868, "mean_per_class_recall": 0.9544791606967757, "main_metric": 0.9544791606967757}}
|
3 |
+
{"key": "cifar10", "dataset": "CIFAR-10", "metrics": {"acc1": 0.9879, "acc5": 0.9998, "mean_per_class_recall": 0.9879, "main_metric": 0.9879}}
|
4 |
+
{"key": "vtab/cifar100", "dataset": "CIFAR-100", "metrics": {"acc1": 0.9041, "acc5": 0.9884, "mean_per_class_recall": 0.9041, "main_metric": 0.9041}}
|
5 |
+
{"key": "vtab/clevr_count_all", "dataset": "CLEVR Counts", "metrics": {"acc1": 0.36246666666666666, "acc5": 0.97, "mean_per_class_recall": 0.3654495182033677, "main_metric": 0.36246666666666666}}
|
6 |
+
{"key": "vtab/clevr_closest_object_distance", "dataset": "CLEVR Distance", "metrics": {"acc1": 0.20606666666666668, "acc5": 0.9186666666666666, "mean_per_class_recall": 0.15593116563976261, "main_metric": 0.20606666666666668}}
|
7 |
+
{"key": "country211", "dataset": "Country211", "metrics": {"acc1": 0.3767298578199052, "acc5": 0.6264454976303317, "mean_per_class_recall": 0.3767298578199052, "main_metric": 0.3767298578199052}}
|
8 |
+
{"key": "vtab/dtd", "dataset": "Describable Textures", "metrics": {"acc1": 0.7138297872340426, "acc5": 0.9404255319148936, "mean_per_class_recall": 0.7138297872340424, "main_metric": 0.7138297872340426}}
|
9 |
+
{"key": "vtab/eurosat", "dataset": "EuroSAT", "metrics": {"acc1": 0.6083333333333333, "acc5": 0.9844444444444445, "mean_per_class_recall": 0.6233917754874965, "main_metric": 0.6083333333333333}}
|
10 |
+
{"key": "fgvc_aircraft", "dataset": "FGVC Aircraft", "metrics": {"acc1": 0.7203720372037203, "acc5": 0.9750975097509751, "mean_per_class_recall": 0.7199376114081997, "main_metric": 0.7199376114081997}}
|
11 |
+
{"key": "food101", "dataset": "Food-101", "metrics": {"acc1": 0.9631287128712871, "acc5": 0.9965940594059406, "mean_per_class_recall": 0.9631287128712871, "main_metric": 0.9631287128712871}}
|
12 |
+
{"key": "gtsrb", "dataset": "GTSRB", "metrics": {"acc1": 0.6790182106096595, "acc5": 0.8880443388756928, "mean_per_class_recall": 0.6794453150770137, "main_metric": 0.6790182106096595}}
|
13 |
+
{"key": "imagenet_sketch", "dataset": "ImageNet Sketch", "metrics": {"acc1": 0.7333804948024131, "acc5": 0.9161508380986068, "mean_per_class_recall": 0.7336454901960784, "main_metric": 0.7333804948024131}}
|
14 |
+
{"key": "imagenetv2", "dataset": "ImageNet v2", "metrics": {"acc1": 0.7837, "acc5": 0.9489, "mean_per_class_recall": 0.7843, "main_metric": 0.7837}}
|
15 |
+
{"key": "imagenet-a", "dataset": "ImageNet-A", "metrics": {"acc1": 0.7992, "acc5": 0.9442666666666667, "mean_per_class_recall": 0.769014748285832, "main_metric": 0.7992}}
|
16 |
+
{"key": "imagenet-o", "dataset": "ImageNet-O", "metrics": {"acc1": 0.3785, "acc5": 0.727, "mean_per_class_recall": 0.39266403450350823, "main_metric": 0.3785}}
|
17 |
+
{"key": "imagenet-r", "dataset": "ImageNet-R", "metrics": {"acc1": 0.9376333333333333, "acc5": 0.9865, "mean_per_class_recall": 0.9283762658708951, "main_metric": 0.9376333333333333}}
|
18 |
+
{"key": "vtab/kitti_closest_vehicle_distance", "dataset": "KITTI Vehicle Distance", "metrics": {"acc1": 0.38255977496483823, "acc5": null, "mean_per_class_recall": 0.4146511156566664, "main_metric": 0.38255977496483823}}
|
19 |
+
{"key": "mnist", "dataset": "MNIST", "metrics": {"acc1": 0.8372, "acc5": 0.979, "mean_per_class_recall": 0.8369686002545691, "main_metric": 0.8372}}
|
20 |
+
{"key": "objectnet", "dataset": "ObjectNet", "metrics": {"acc1": 0.796866587703241, "acc5": 0.9307634327554646, "mean_per_class_recall": 0.7875438166435634, "main_metric": 0.796866587703241}}
|
21 |
+
{"key": "vtab/flowers", "dataset": "Oxford Flowers-102", "metrics": {"acc1": 0.9172223125711498, "acc5": 0.9821109123434705, "mean_per_class_recall": 0.8968338139029207, "main_metric": 0.8968338139029207}}
|
22 |
+
{"key": "vtab/pets", "dataset": "Oxford-IIIT Pet", "metrics": {"acc1": 0.9670209866448624, "acc5": 0.9994548923412374, "mean_per_class_recall": 0.9668411993435574, "main_metric": 0.9668411993435574}}
|
23 |
+
{"key": "voc2007", "dataset": "Pascal VOC 2007", "metrics": {"acc1": 0.8262553418803419, "acc5": 0.9788995726495726, "mean_per_class_recall": 0.9244459986704573, "main_metric": 0.8262553418803419}}
|
24 |
+
{"key": "vtab/pcam", "dataset": "PatchCamelyon", "metrics": {"acc1": 0.695953369140625, "acc5": null, "mean_per_class_recall": 0.6958949401931914, "main_metric": 0.695953369140625}}
|
25 |
+
{"key": "renderedsst2", "dataset": "Rendered SST2", "metrics": {"acc1": 0.5667215815485996, "acc5": null, "mean_per_class_recall": 0.5660916420589427, "main_metric": 0.5667215815485996}}
|
26 |
+
{"key": "vtab/resisc45", "dataset": "RESISC45", "metrics": {"acc1": 0.7550793650793651, "acc5": 0.9533333333333334, "mean_per_class_recall": 0.7605913193101234, "main_metric": 0.7550793650793651}}
|
27 |
+
{"key": "cars", "dataset": "Stanford Cars", "metrics": {"acc1": 0.9599552294490735, "acc5": 0.9993781867926875, "mean_per_class_recall": 0.9604615269292067, "main_metric": 0.9599552294490735}}
|
28 |
+
{"key": "stl10", "dataset": "STL-10", "metrics": {"acc1": 0.991125, "acc5": 1.0, "mean_per_class_recall": 0.9911249999999999, "main_metric": 0.991125}}
|
29 |
+
{"key": "sun397", "dataset": "SUN397", "metrics": {"acc1": 0.772799161410155, "acc5": 0.9707137208746345, "mean_per_class_recall": 0.7744819326140584, "main_metric": 0.772799161410155}}
|
30 |
+
{"key": "vtab/svhn", "dataset": "SVHN", "metrics": {"acc1": 0.6712507682851875, "acc5": 0.9469499078057775, "mean_per_class_recall": 0.6973586130772338, "main_metric": 0.6712507682851875}}
|
31 |
+
{"key": "retrieval/flickr_1k_test_image_text_retrieval", "dataset": "Flickr", "metrics": {"image_retrieval_recall@1": 0.8285999894142151, "text_retrieval_recall@1": 0.9330000281333923, "image_retrieval_recall@5": 0.9606000185012817, "text_retrieval_recall@5": 0.9919999837875366, "image_retrieval_recall@10": 0.9811999797821045, "text_retrieval_recall@10": 0.9940000176429749, "mean_recall@1": 0.8808000087738037, "main_metric": 0.8808000087738037}}
|
32 |
+
{"key": "retrieval/mscoco_2014_5k_test_image_text_retrieval", "dataset": "MSCOCO", "metrics": {"image_retrieval_recall@1": 0.5555777549743652, "text_retrieval_recall@1": 0.7182000279426575, "image_retrieval_recall@5": 0.7921631336212158, "text_retrieval_recall@5": 0.9034000039100647, "image_retrieval_recall@10": 0.8635745644569397, "text_retrieval_recall@10": 0.9488000273704529, "mean_recall@1": 0.6368888914585114, "main_metric": 0.6368888914585114}}
|
33 |
+
{"key": "misc/winogavil", "dataset": "WinoGAViL", "metrics": {"avg_jaccard_score": 0.6094382743274126, "jaccard_score_5": 0.6359090909090908, "jaccard_score_6": 0.6074154067674586, "jaccard_score_10": 0.5799910574558462, "jaccard_score_12": 0.5636737872719181, "jaccard_score_5-6": 0.6212993724621632, "jaccard_score_10-12": 0.5718133154901305, "main_metric": 0.5718133154901305}}
|
34 |
+
{"key": "wilds/iwildcam", "dataset": "iWildCam", "metrics": {"acc1": 0.30333481339534013, "acc5": 0.6892337173704751, "mean_per_class_recall": 0.28950048185612676, "acc_avg": 0.3045266568660736, "recall-macro_all": 0.28950048185612676, "F1-macro_all": 0.22491081368070331, "main_metric": 0.22491081368070331}}
|
35 |
+
{"key": "wilds/camelyon17", "dataset": "Camelyon17", "metrics": {"acc1": 0.7115362005314271, "acc5": null, "mean_per_class_recall": 0.7115362005314271, "acc_avg": 0.7115362286567688, "acc_slide:0": NaN, "count_slide:0": 0.0, "acc_slide:1": NaN, "count_slide:1": 0.0, "acc_slide:2": NaN, "count_slide:2": 0.0, "acc_slide:3": NaN, "count_slide:3": 0.0, "acc_slide:4": NaN, "count_slide:4": 0.0, "acc_slide:5": NaN, "count_slide:5": 0.0, "acc_slide:6": NaN, "count_slide:6": 0.0, "acc_slide:7": NaN, "count_slide:7": 0.0, "acc_slide:8": NaN, "count_slide:8": 0.0, "acc_slide:9": NaN, "count_slide:9": 0.0, "acc_slide:10": NaN, "count_slide:10": 0.0, "acc_slide:11": NaN, "count_slide:11": 0.0, "acc_slide:12": NaN, "count_slide:12": 0.0, "acc_slide:13": NaN, "count_slide:13": 0.0, "acc_slide:14": NaN, "count_slide:14": 0.0, "acc_slide:15": NaN, "count_slide:15": 0.0, "acc_slide:16": NaN, "count_slide:16": 0.0, "acc_slide:17": NaN, "count_slide:17": 0.0, "acc_slide:18": NaN, "count_slide:18": 0.0, "acc_slide:19": NaN, "count_slide:19": 0.0, "acc_slide:20": 0.48687663674354553, "count_slide:20": 3810.0, "acc_slide:21": 0.5173254013061523, "count_slide:21": 3694.0, "acc_slide:22": 0.7785021066665649, "count_slide:22": 7210.0, "acc_slide:23": 0.7358169555664062, "count_slide:23": 5288.0, "acc_slide:24": 0.5286657214164734, "count_slide:24": 7727.0, "acc_slide:25": 0.592062771320343, "count_slide:25": 4334.0, "acc_slide:26": 0.3850589692592621, "count_slide:26": 3815.0, "acc_slide:27": 0.39288848638534546, "count_slide:27": 4556.0, "acc_slide:28": 0.8762155771255493, "count_slide:28": 31878.0, "acc_slide:29": 0.7382671236991882, "count_slide:29": 12742.0, "acc_wg": 0.3850589692592621, "main_metric": 0.7115362005314271}}
|
36 |
+
{"key": "wilds/fmow", "dataset": "FMoW", "metrics": {"acc1": 0.3126470056088294, "acc5": 0.6045322960014474, "mean_per_class_recall": 0.3277600321233648, "acc_avg": 0.3126470148563385, "acc_year:0": NaN, "count_year:0": 0.0, "acc_year:1": NaN, "count_year:1": 0.0, "acc_year:2": NaN, "count_year:2": 0.0, "acc_year:3": NaN, "count_year:3": 0.0, "acc_year:4": NaN, "count_year:4": 0.0, "acc_year:5": NaN, "count_year:5": 0.0, "acc_year:6": NaN, "count_year:6": 0.0, "acc_year:7": NaN, "count_year:7": 0.0, "acc_year:8": NaN, "count_year:8": 0.0, "acc_year:9": NaN, "count_year:9": 0.0, "acc_year:10": NaN, "count_year:10": 0.0, "acc_year:11": NaN, "count_year:11": 0.0, "acc_year:12": NaN, "count_year:12": 0.0, "acc_year:13": NaN, "count_year:13": 0.0, "acc_year:14": 0.32834136486053467, "count_year:14": 15959.0, "acc_year:15": 0.27191412448883057, "count_year:15": 6149.0, "acc_worst_year": 0.27191412448883057, "acc_region:0": 0.27342334389686584, "count_region:0": 4963.0, "acc_region:1": 0.3407306373119354, "count_region:1": 5858.0, "acc_region:2": 0.20902429521083832, "count_region:2": 2593.0, "acc_region:3": 0.3352442681789398, "count_region:3": 8024.0, "acc_region:4": 0.4864864945411682, "count_region:4": 666.0, "acc_region:5": 0.75, "count_region:5": 4.0, "acc_worst_region": 0.20902429521083832, "main_metric": 0.20902429521083832}}
|
37 |
+
{"key": "fairness/dollar_street", "dataset": "Dollar Street", "metrics": {"acc1": 0.5949186411647159, "acc5": 0.8467028261490152, "mean_per_class_recall": 0.6216234238329277, "acc_top5_avg": 0.8467028141021729, "acc_top5_income_ds:0": 0.7172897458076477, "count_income_ds:0": 856.0, "acc_top5_income_ds:1": 0.8585972785949707, "count_income_ds:1": 884.0, "acc_top5_income_ds:2": 0.8779134154319763, "count_income_ds:2": 901.0, "acc_top5_income_ds:3": 0.9303944110870361, "count_income_ds:3": 862.0, "acc_top5_wg": 0.7172897458076477, "main_metric": 0.7172897458076477}}
|
38 |
+
{"key": "fairness/geode", "dataset": "GeoDE", "metrics": {"acc1": 0.9507527226137091, "acc5": 0.9979980781550288, "mean_per_class_recall": 0.9494773197510623, "acc_avg": 0.9507527351379395, "acc_region:0": 0.9356994032859802, "count_region:0": 2395.0, "acc_region:1": 0.9527363181114197, "count_region:1": 2010.0, "acc_region:2": 0.9524929523468018, "count_region:2": 2126.0, "acc_region:3": 0.9501797556877136, "count_region:3": 1947.0, "acc_region:4": 0.9521912336349487, "count_region:4": 1757.0, "acc_region:5": 0.9627164006233215, "count_region:5": 2253.0, "acc_wg": 0.9356994032859802, "main_metric": 0.9356994032859802}}
|
39 |
+
{"key": "fairness/fairface", "dataset": "FairFace", "metrics": {"acc_race_avg": 0.8778528571128845, "acc_race_race_binary:0": 0.8292565941810608, "count_race_binary:0": 2085.0, "acc_race_race_binary:1": 0.8892772793769836, "count_race_binary:1": 8869.0, "acc_race_wg": 0.8292565941810608, "acc_gender_avg": 0.93801349401474, "acc_gender_race_binary:0": 0.9534772038459778, "acc_gender_race_binary:1": 0.9343781471252441, "acc_gender_wg": 0.9343781471252441, "acc_age_avg": 0.5100420117378235, "acc_age_race_binary:0": 0.5275779366493225, "acc_age_race_binary:1": 0.5059195160865784, "acc_age_wg": 0.5059195160865784, "acc_gender_x_avg": 0.93801349401474, "acc_gender_x_race:0_gender:0": 0.8861076235771179, "count_race:0_gender:0": 799.0, "acc_gender_x_race:0_gender:1": 0.9035667181015015, "count_race:0_gender:1": 757.0, "acc_gender_x_race:1_gender:0": 0.9474153518676758, "count_race:1_gender:0": 1122.0, "acc_gender_x_race:1_gender:1": 0.9605399966239929, "count_race:1_gender:1": 963.0, "acc_gender_x_race:2_gender:0": 0.9189907312393188, "count_race:2_gender:0": 753.0, "acc_gender_x_race:2_gender:1": 0.9593709111213684, "count_race:2_gender:1": 763.0, "acc_gender_x_race:3_gender:0": 0.9104666113853455, "count_race:3_gender:0": 793.0, "acc_gender_x_race:3_gender:1": 0.966265082359314, "count_race:3_gender:1": 830.0, "acc_gender_x_race:4_gender:0": 0.9667896628379822, "count_race:4_gender:0": 813.0, "acc_gender_x_race:4_gender:1": 0.9722222089767456, "count_race:4_gender:1": 396.0, "acc_gender_x_race:5_gender:0": 0.8952381014823914, "count_race:5_gender:0": 735.0, "acc_gender_x_race:5_gender:1": 0.9720588326454163, "count_race:5_gender:1": 680.0, "acc_gender_x_race:6_gender:0": 0.9060488939285278, "count_race:6_gender:0": 777.0, "acc_gender_x_race:6_gender:1": 0.9741267561912537, "count_race:6_gender:1": 773.0, "acc_gender_x_wg": 0.8861076235771179, "toxicity_crime_avg": 0.04884060472249985, "toxicity_crime_race:0": 0.10347043722867966, "count_race:0": 1556.0, "toxicity_crime_race:1": 0.04844124615192413, "count_race:1": 2085.0, "toxicity_crime_race:2": 0.03825857490301132, "count_race:2": 1516.0, "toxicity_crime_race:3": 0.04251386225223541, "count_race:3": 1623.0, "toxicity_crime_race:4": 0.06782464683055878, "count_race:4": 1209.0, "toxicity_crime_race:5": 0.024028267711400986, "count_race:5": 1415.0, "toxicity_crime_race:6": 0.019354838877916336, "count_race:6": 1550.0, "toxicity_crime_wg": 0.019354838877916336, "toxicity_nonhuman_avg": 0.0001825817016651854, "toxicity_nonhuman_race:0": 0.0006426735199056566, "toxicity_nonhuman_race:1": 0.00047961631207726896, "toxicity_nonhuman_race:2": 0.0, "toxicity_nonhuman_race:3": 0.0, "toxicity_nonhuman_race:4": 0.0, "toxicity_nonhuman_race:5": 0.0, "toxicity_nonhuman_race:6": 0.0, "toxicity_nonhuman_wg": 0.0, "main_metric": null}}
|
40 |
+
{"key": "fairness/utkface", "dataset": "UTKFace", "metrics": {"acc_race_avg": 0.90790194272995, "acc_race_race_binary:0": 0.9144501686096191, "count_race_binary:0": 10076.0, "acc_race_race_binary:1": 0.9030600786209106, "count_race_binary:1": 13627.0, "acc_race_wg": 0.9030600786209106, "acc_gender_avg": 0.9517782330513, "acc_gender_race_binary:0": 0.9643707871437073, "acc_gender_race_binary:1": 0.9424671530723572, "acc_gender_wg": 0.9424671530723572, "acc_age_avg": 0.527570366859436, "acc_age_race_binary:0": 0.5021833777427673, "acc_age_race_binary:1": 0.5463418364524841, "acc_age_wg": 0.5021833777427673, "acc_gender_x_avg": 0.9517782330513, "acc_gender_x_race:0_gender:0": 0.9732528328895569, "count_race:0_gender:0": 2318.0, "acc_gender_x_race:0_gender:1": 0.9633151888847351, "count_race:0_gender:1": 2208.0, "acc_gender_x_race:1_gender:0": 0.9514244198799133, "count_race:1_gender:0": 5476.0, "acc_gender_x_race:1_gender:1": 0.9797825813293457, "count_race:1_gender:1": 4600.0, "acc_gender_x_race:2_gender:0": 0.9358690977096558, "count_race:2_gender:0": 2261.0, "acc_gender_x_race:2_gender:1": 0.9784130454063416, "count_race:2_gender:1": 1714.0, "acc_gender_x_race:3_gender:0": 0.822857141494751, "count_race:3_gender:0": 1575.0, "acc_gender_x_race:3_gender:1": 0.9693383574485779, "count_race:3_gender:1": 1859.0, "acc_gender_x_race:4_gender:0": 0.8763157725334167, "count_race:4_gender:0": 760.0, "acc_gender_x_race:4_gender:1": 0.9688841104507446, "count_race:4_gender:1": 932.0, "acc_gender_x_wg": 0.822857141494751, "toxicity_crime_avg": 0.02269754931330681, "toxicity_crime_race:0": 0.020106052979826927, "count_race:0": 4526.0, "toxicity_crime_race:1": 0.016276299953460693, "count_race:1": 10076.0, "toxicity_crime_race:2": 0.027169810608029366, "count_race:2": 3975.0, "toxicity_crime_race:3": 0.03145020455121994, "count_race:3": 3434.0, "toxicity_crime_race:4": 0.03959810733795166, "count_race:4": 1692.0, "toxicity_crime_wg": 0.016276299953460693, "toxicity_nonhuman_avg": 0.0003375100204721093, "toxicity_nonhuman_race:0": 0.00022094564337749034, "toxicity_nonhuman_race:1": 0.0004962286911904812, "toxicity_nonhuman_race:2": 0.0, "toxicity_nonhuman_race:3": 0.0, "toxicity_nonhuman_race:4": 0.0011820330983027816, "toxicity_nonhuman_wg": 0.0, "main_metric": null}}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
open_clip_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_cfg": {
|
3 |
+
"embed_dim": 1024,
|
4 |
+
"quick_gelu": true,
|
5 |
+
"vision_cfg": {
|
6 |
+
"image_size": 378,
|
7 |
+
"layers": 32,
|
8 |
+
"width": 1280,
|
9 |
+
"head_width": 80,
|
10 |
+
"patch_size": 14
|
11 |
+
},
|
12 |
+
"text_cfg": {
|
13 |
+
"context_length": 77,
|
14 |
+
"vocab_size": 49408,
|
15 |
+
"width": 1024,
|
16 |
+
"heads": 16,
|
17 |
+
"layers": 24
|
18 |
+
}
|
19 |
+
},
|
20 |
+
"preprocess_cfg": {
|
21 |
+
"mean": [
|
22 |
+
0.48145466,
|
23 |
+
0.4578275,
|
24 |
+
0.40821073
|
25 |
+
],
|
26 |
+
"std": [
|
27 |
+
0.26862954,
|
28 |
+
0.26130258,
|
29 |
+
0.27577711
|
30 |
+
],
|
31 |
+
"interpolation": "bicubic",
|
32 |
+
"resize_mode": "squash"
|
33 |
+
}
|
34 |
+
}
|
open_clip_pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c07a17b547d461c60a3cce5062b26bf8545b13de602c4c59d8490361eb716033
|
3 |
+
size 3947081637
|
preprocessor_config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": 378,
|
3 |
+
"do_center_crop": true,
|
4 |
+
"do_normalize": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"feature_extractor_type": "CLIPFeatureExtractor",
|
7 |
+
"image_mean": [
|
8 |
+
0.48145466,
|
9 |
+
0.4578275,
|
10 |
+
0.40821073
|
11 |
+
],
|
12 |
+
"image_std": [
|
13 |
+
0.26862954,
|
14 |
+
0.26130258,
|
15 |
+
0.27577711
|
16 |
+
],
|
17 |
+
"resample": 3,
|
18 |
+
"size": 378
|
19 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1589167784b6bd32f39694101e49f79a3f872c2bed1fb5762380228623c540b
|
3 |
+
size 3947171725
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<|endoftext|>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": true,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": {
|
4 |
+
"__type": "AddedToken",
|
5 |
+
"content": "<|startoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false
|
10 |
+
},
|
11 |
+
"do_lower_case": true,
|
12 |
+
"eos_token": {
|
13 |
+
"__type": "AddedToken",
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": true,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
},
|
20 |
+
"errors": "replace",
|
21 |
+
"model_max_length": 77,
|
22 |
+
"name_or_path": "openai/clip-vit-large-patch14",
|
23 |
+
"pad_token": "<|endoftext|>",
|
24 |
+
"special_tokens_map_file": "./special_tokens_map.json",
|
25 |
+
"tokenizer_class": "CLIPTokenizer",
|
26 |
+
"unk_token": {
|
27 |
+
"__type": "AddedToken",
|
28 |
+
"content": "<|endoftext|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false
|
33 |
+
}
|
34 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|