# aaa-2-sql This is a finetuned version of [Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) using LoRA with LitGPT. ## Training Details - **Base Model:** mistralai/Mistral-7B-Instruct-v0.3 - **Framework:** LitGPT - **Finetuning Method:** Low-Rank Adaptation (LoRA) - **LoRA Parameters:** - Rank (r): 16 - Alpha: 32 - Dropout: 0.05 - **Quantization:** bnb.nf4 - **Context Length:** 4098 tokens - **Training Steps:** 2000 ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM # Load model and tokenizer model = AutoModelForCausalLM.from_pretrained("exaler/aaa-2-sql") tokenizer = AutoTokenizer.from_pretrained("exaler/aaa-2-sql") # Create prompt prompt = "Your prompt here" # Generate text inputs = tokenizer(prompt, return_tensors="pt").to(model.device) output = model.generate(**inputs, max_new_tokens=1024) response = tokenizer.decode(output[0], skip_special_tokens=True) print(response) ```