|
import torch.nn as nn |
|
|
|
from . import base |
|
from . import functional as F |
|
from ..base.modules import Activation |
|
|
|
|
|
class JaccardLoss(base.Loss): |
|
|
|
def __init__(self, eps=1., activation=None, ignore_channels=None, **kwargs): |
|
super().__init__(**kwargs) |
|
self.eps = eps |
|
self.activation = Activation(activation) |
|
self.ignore_channels = ignore_channels |
|
|
|
def forward(self, y_pr, y_gt): |
|
y_pr = self.activation(y_pr) |
|
return 1 - F.jaccard( |
|
y_pr, y_gt, |
|
eps=self.eps, |
|
threshold=None, |
|
ignore_channels=self.ignore_channels, |
|
) |
|
|
|
|
|
class DiceLoss(base.Loss): |
|
|
|
def __init__(self, eps=1., beta=1., activation=None, ignore_channels=None, **kwargs): |
|
super().__init__(**kwargs) |
|
self.eps = eps |
|
self.beta = beta |
|
self.activation = Activation(activation) |
|
self.ignore_channels = ignore_channels |
|
|
|
def forward(self, y_pr, y_gt): |
|
y_pr = self.activation(y_pr) |
|
return 1 - F.f_score( |
|
y_pr, y_gt, |
|
beta=self.beta, |
|
eps=self.eps, |
|
threshold=None, |
|
ignore_channels=self.ignore_channels, |
|
) |
|
|
|
|
|
class L1Loss(nn.L1Loss, base.Loss): |
|
pass |
|
|
|
|
|
class MSELoss(nn.MSELoss, base.Loss): |
|
pass |
|
|
|
|
|
class CrossEntropyLoss(nn.CrossEntropyLoss, base.Loss): |
|
pass |
|
|
|
|
|
class NLLLoss(nn.NLLLoss, base.Loss): |
|
pass |
|
|
|
|
|
class BCELoss(nn.BCELoss, base.Loss): |
|
pass |
|
|
|
|
|
class BCEWithLogitsLoss(nn.BCEWithLogitsLoss, base.Loss): |
|
pass |
|
|