|
""" Each encoder should have following attributes and methods and be inherited from `_base.EncoderMixin` |
|
|
|
Attributes: |
|
|
|
_out_channels (list of int): specify number of channels for each encoder feature tensor |
|
_depth (int): specify number of stages in decoder (in other words number of downsampling operations) |
|
_in_channels (int): default number of input channels in first Conv2d layer for encoder (usually 3) |
|
|
|
Methods: |
|
|
|
forward(self, x: torch.Tensor) |
|
produce list of features of different spatial resolutions, each feature is a 4D torch.tensor of |
|
shape NCHW (features should be sorted in descending order according to spatial resolution, starting |
|
with resolution same as input `x` tensor). |
|
|
|
Input: `x` with shape (1, 3, 64, 64) |
|
Output: [f0, f1, f2, f3, f4, f5] - features with corresponding shapes |
|
[(1, 3, 64, 64), (1, 64, 32, 32), (1, 128, 16, 16), (1, 256, 8, 8), |
|
(1, 512, 4, 4), (1, 1024, 2, 2)] (C - dim may differ) |
|
|
|
also should support number of features according to specified depth, e.g. if depth = 5, |
|
number of feature tensors = 6 (one with same resolution as input and 5 downsampled), |
|
depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled). |
|
""" |
|
|
|
import torchvision |
|
import torch.nn as nn |
|
|
|
from ._base import EncoderMixin |
|
|
|
|
|
class MobileNetV2Encoder(torchvision.models.MobileNetV2, EncoderMixin): |
|
|
|
def __init__(self, out_channels, depth=5, **kwargs): |
|
super().__init__(**kwargs) |
|
self._depth = depth |
|
self._out_channels = out_channels |
|
self._in_channels = 3 |
|
del self.classifier |
|
|
|
def get_stages(self): |
|
return [ |
|
nn.Identity(), |
|
self.features[:2], |
|
self.features[2:4], |
|
self.features[4:7], |
|
self.features[7:14], |
|
self.features[14:], |
|
] |
|
|
|
def forward(self, x): |
|
stages = self.get_stages() |
|
|
|
features = [] |
|
for i in range(self._depth + 1): |
|
x = stages[i](x) |
|
features.append(x) |
|
|
|
return features |
|
|
|
def load_state_dict(self, state_dict, **kwargs): |
|
state_dict.pop("classifier.1.bias", None) |
|
state_dict.pop("classifier.1.weight", None) |
|
super().load_state_dict(state_dict, **kwargs) |
|
|
|
|
|
mobilenet_encoders = { |
|
"mobilenet_v2": { |
|
"encoder": MobileNetV2Encoder, |
|
"pretrained_settings": { |
|
"imagenet": { |
|
"mean": [0.485, 0.456, 0.406], |
|
"std": [0.229, 0.224, 0.225], |
|
"url": "https://download.pytorch.org/models/mobilenet_v2-b0353104.pth", |
|
"input_space": "RGB", |
|
"input_range": [0, 1], |
|
}, |
|
}, |
|
"params": { |
|
"out_channels": (3, 16, 24, 32, 96, 1280), |
|
}, |
|
}, |
|
} |
|
|