|
import timm |
|
import functools |
|
import torch.utils.model_zoo as model_zoo |
|
|
|
from .resnet import resnet_encoders |
|
from .dpn import dpn_encoders |
|
from .vgg import vgg_encoders |
|
from .senet import senet_encoders |
|
from .densenet import densenet_encoders |
|
from .inceptionresnetv2 import inceptionresnetv2_encoders |
|
from .inceptionv4 import inceptionv4_encoders |
|
from .efficientnet import efficient_net_encoders |
|
from .mobilenet import mobilenet_encoders |
|
from .xception import xception_encoders |
|
from .timm_efficientnet import timm_efficientnet_encoders |
|
from .timm_resnest import timm_resnest_encoders |
|
from .timm_res2net import timm_res2net_encoders |
|
from .timm_regnet import timm_regnet_encoders |
|
from .timm_sknet import timm_sknet_encoders |
|
from .timm_mobilenetv3 import timm_mobilenetv3_encoders |
|
from .timm_gernet import timm_gernet_encoders |
|
from .mix_transformer import mix_transformer_encoders |
|
from .mobileone import mobileone_encoders |
|
|
|
from .timm_universal import TimmUniversalEncoder |
|
|
|
from ._preprocessing import preprocess_input |
|
|
|
encoders = {} |
|
encoders.update(resnet_encoders) |
|
encoders.update(dpn_encoders) |
|
encoders.update(vgg_encoders) |
|
encoders.update(senet_encoders) |
|
encoders.update(densenet_encoders) |
|
encoders.update(inceptionresnetv2_encoders) |
|
encoders.update(inceptionv4_encoders) |
|
encoders.update(efficient_net_encoders) |
|
encoders.update(mobilenet_encoders) |
|
encoders.update(xception_encoders) |
|
encoders.update(timm_efficientnet_encoders) |
|
encoders.update(timm_resnest_encoders) |
|
encoders.update(timm_res2net_encoders) |
|
encoders.update(timm_regnet_encoders) |
|
encoders.update(timm_sknet_encoders) |
|
encoders.update(timm_mobilenetv3_encoders) |
|
encoders.update(timm_gernet_encoders) |
|
encoders.update(mix_transformer_encoders) |
|
encoders.update(mobileone_encoders) |
|
|
|
|
|
def get_encoder(name, in_channels=3, depth=5, weights=None, output_stride=32, **kwargs): |
|
|
|
if name.startswith("tu-"): |
|
name = name[3:] |
|
encoder = TimmUniversalEncoder( |
|
name=name, |
|
in_channels=in_channels, |
|
depth=depth, |
|
output_stride=output_stride, |
|
pretrained=weights is not None, |
|
**kwargs, |
|
) |
|
return encoder |
|
|
|
try: |
|
Encoder = encoders[name]["encoder"] |
|
except KeyError: |
|
raise KeyError("Wrong encoder name `{}`, supported encoders: {}".format(name, list(encoders.keys()))) |
|
|
|
params = encoders[name]["params"] |
|
params.update(depth=depth) |
|
encoder = Encoder(**params) |
|
|
|
if weights is not None: |
|
try: |
|
settings = encoders[name]["pretrained_settings"][weights] |
|
except KeyError: |
|
raise KeyError( |
|
"Wrong pretrained weights `{}` for encoder `{}`. Available options are: {}".format( |
|
weights, |
|
name, |
|
list(encoders[name]["pretrained_settings"].keys()), |
|
) |
|
) |
|
|
|
try: |
|
if 'lvmmed' in settings["url"]: |
|
print(settings['url']) |
|
path = settings['url'] |
|
import torch |
|
weights = torch.load(path, map_location = 'cpu') |
|
except KeyError: |
|
raise KeyError( |
|
"Pretrained weights not exist") |
|
encoder.load_state_dict(weights) |
|
|
|
encoder.set_in_channels(in_channels, pretrained=weights is not None) |
|
if output_stride != 32: |
|
encoder.make_dilated(output_stride) |
|
|
|
return encoder |
|
|
|
|
|
def get_encoder_names(): |
|
return list(encoders.keys()) |
|
|
|
|
|
def get_preprocessing_params(encoder_name, pretrained="imagenet"): |
|
|
|
if encoder_name.startswith("tu-"): |
|
encoder_name = encoder_name[3:] |
|
if not timm.models.is_model_pretrained(encoder_name): |
|
raise ValueError(f"{encoder_name} does not have pretrained weights and preprocessing parameters") |
|
settings = timm.models.get_pretrained_cfg(encoder_name).__dict__ |
|
else: |
|
all_settings = encoders[encoder_name]["pretrained_settings"] |
|
if pretrained not in all_settings.keys(): |
|
raise ValueError("Available pretrained options {}".format(all_settings.keys())) |
|
settings = all_settings[pretrained] |
|
|
|
formatted_settings = {} |
|
formatted_settings["input_space"] = settings.get("input_space", "RGB") |
|
formatted_settings["input_range"] = list(settings.get("input_range", [0, 1])) |
|
formatted_settings["mean"] = list(settings["mean"]) |
|
formatted_settings["std"] = list(settings["std"]) |
|
|
|
return formatted_settings |
|
|
|
|
|
def get_preprocessing_fn(encoder_name, pretrained="imagenet"): |
|
params = get_preprocessing_params(encoder_name, pretrained=pretrained) |
|
return functools.partial(preprocess_input, **params) |
|
|