|
import torch |
|
from . import initialization as init |
|
|
|
|
|
class SegmentationModel(torch.nn.Module): |
|
|
|
def initialize(self): |
|
init.initialize_decoder(self.decoder) |
|
init.initialize_head(self.segmentation_head) |
|
if self.classification_head is not None: |
|
init.initialize_head(self.classification_head) |
|
|
|
def forward(self, x): |
|
"""Sequentially pass `x` trough model`s encoder, decoder and heads""" |
|
features = self.encoder(x) |
|
decoder_output = self.decoder(*features) |
|
|
|
masks = self.segmentation_head(decoder_output) |
|
|
|
if self.classification_head is not None: |
|
labels = self.classification_head(features[-1]) |
|
return masks, labels |
|
|
|
return masks |
|
|
|
def predict(self, x): |
|
"""Inference method. Switch model to `eval` mode, call `.forward(x)` with `torch.no_grad()` |
|
|
|
Args: |
|
x: 4D torch tensor with shape (batch_size, channels, height, width) |
|
|
|
Return: |
|
prediction: 4D torch tensor with shape (batch_size, classes, height, width) |
|
|
|
""" |
|
if self.training: |
|
self.eval() |
|
|
|
with torch.no_grad(): |
|
x = self.forward(x) |
|
|
|
return x |
|
|