|
from ._base import EncoderMixin |
|
from timm.models.resnet import ResNet |
|
from timm.models.sknet import SelectiveKernelBottleneck, SelectiveKernelBasic |
|
import torch.nn as nn |
|
|
|
|
|
class SkNetEncoder(ResNet, EncoderMixin): |
|
def __init__(self, out_channels, depth=5, **kwargs): |
|
super().__init__(**kwargs) |
|
self._depth = depth |
|
self._out_channels = out_channels |
|
self._in_channels = 3 |
|
|
|
del self.fc |
|
del self.global_pool |
|
|
|
def get_stages(self): |
|
return [ |
|
nn.Identity(), |
|
nn.Sequential(self.conv1, self.bn1, self.act1), |
|
nn.Sequential(self.maxpool, self.layer1), |
|
self.layer2, |
|
self.layer3, |
|
self.layer4, |
|
] |
|
|
|
def forward(self, x): |
|
stages = self.get_stages() |
|
|
|
features = [] |
|
for i in range(self._depth + 1): |
|
x = stages[i](x) |
|
features.append(x) |
|
|
|
return features |
|
|
|
def load_state_dict(self, state_dict, **kwargs): |
|
state_dict.pop("fc.bias", None) |
|
state_dict.pop("fc.weight", None) |
|
super().load_state_dict(state_dict, **kwargs) |
|
|
|
|
|
sknet_weights = { |
|
'timm-skresnet18': { |
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet18_ra-4eec2804.pth' |
|
}, |
|
'timm-skresnet34': { |
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet34_ra-bdc0ccde.pth' |
|
}, |
|
'timm-skresnext50_32x4d': { |
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnext50_ra-f40e40bf.pth', |
|
} |
|
} |
|
|
|
pretrained_settings = {} |
|
for model_name, sources in sknet_weights.items(): |
|
pretrained_settings[model_name] = {} |
|
for source_name, source_url in sources.items(): |
|
pretrained_settings[model_name][source_name] = { |
|
"url": source_url, |
|
'input_size': [3, 224, 224], |
|
'input_range': [0, 1], |
|
'mean': [0.485, 0.456, 0.406], |
|
'std': [0.229, 0.224, 0.225], |
|
'num_classes': 1000 |
|
} |
|
|
|
timm_sknet_encoders = { |
|
'timm-skresnet18': { |
|
'encoder': SkNetEncoder, |
|
"pretrained_settings": pretrained_settings["timm-skresnet18"], |
|
'params': { |
|
'out_channels': (3, 64, 64, 128, 256, 512), |
|
'block': SelectiveKernelBasic, |
|
'layers': [2, 2, 2, 2], |
|
'zero_init_last_bn': False, |
|
'block_args': {'sk_kwargs': {'rd_ratio': 1/8, 'split_input': True}} |
|
} |
|
}, |
|
'timm-skresnet34': { |
|
'encoder': SkNetEncoder, |
|
"pretrained_settings": pretrained_settings["timm-skresnet34"], |
|
'params': { |
|
'out_channels': (3, 64, 64, 128, 256, 512), |
|
'block': SelectiveKernelBasic, |
|
'layers': [3, 4, 6, 3], |
|
'zero_init_last_bn': False, |
|
'block_args': {'sk_kwargs': {'rd_ratio': 1/8, 'split_input': True}} |
|
} |
|
}, |
|
'timm-skresnext50_32x4d': { |
|
'encoder': SkNetEncoder, |
|
"pretrained_settings": pretrained_settings["timm-skresnext50_32x4d"], |
|
'params': { |
|
'out_channels': (3, 64, 256, 512, 1024, 2048), |
|
'block': SelectiveKernelBottleneck, |
|
'layers': [3, 4, 6, 3], |
|
'zero_init_last_bn': False, |
|
'cardinality': 32, |
|
'base_width': 4 |
|
} |
|
} |
|
} |
|
|