|
from ._base import EncoderMixin |
|
from timm.models.resnet import ResNet |
|
from timm.models.resnest import ResNestBottleneck |
|
import torch.nn as nn |
|
|
|
|
|
class ResNestEncoder(ResNet, EncoderMixin): |
|
def __init__(self, out_channels, depth=5, **kwargs): |
|
super().__init__(**kwargs) |
|
self._depth = depth |
|
self._out_channels = out_channels |
|
self._in_channels = 3 |
|
|
|
del self.fc |
|
del self.global_pool |
|
|
|
def get_stages(self): |
|
return [ |
|
nn.Identity(), |
|
nn.Sequential(self.conv1, self.bn1, self.act1), |
|
nn.Sequential(self.maxpool, self.layer1), |
|
self.layer2, |
|
self.layer3, |
|
self.layer4, |
|
] |
|
|
|
def make_dilated(self, stage_list, dilation_list): |
|
raise ValueError("ResNest encoders do not support dilated mode") |
|
|
|
def forward(self, x): |
|
stages = self.get_stages() |
|
|
|
features = [] |
|
for i in range(self._depth + 1): |
|
x = stages[i](x) |
|
features.append(x) |
|
|
|
return features |
|
|
|
def load_state_dict(self, state_dict, **kwargs): |
|
state_dict.pop("fc.bias", None) |
|
state_dict.pop("fc.weight", None) |
|
super().load_state_dict(state_dict, **kwargs) |
|
|
|
|
|
resnest_weights = { |
|
'timm-resnest14d': { |
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest14-9c8fe254.pth' |
|
}, |
|
'timm-resnest26d': { |
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest26-50eb607c.pth' |
|
}, |
|
'timm-resnest50d': { |
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50-528c19ca.pth', |
|
}, |
|
'timm-resnest101e': { |
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest101-22405ba7.pth', |
|
}, |
|
'timm-resnest200e': { |
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest200-75117900.pth', |
|
}, |
|
'timm-resnest269e': { |
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest269-0cc87c48.pth', |
|
}, |
|
'timm-resnest50d_4s2x40d': { |
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_4s2x40d-41d14ed0.pth', |
|
}, |
|
'timm-resnest50d_1s4x24d': { |
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_1s4x24d-d4a4f76f.pth', |
|
} |
|
} |
|
|
|
pretrained_settings = {} |
|
for model_name, sources in resnest_weights.items(): |
|
pretrained_settings[model_name] = {} |
|
for source_name, source_url in sources.items(): |
|
pretrained_settings[model_name][source_name] = { |
|
"url": source_url, |
|
'input_size': [3, 224, 224], |
|
'input_range': [0, 1], |
|
'mean': [0.485, 0.456, 0.406], |
|
'std': [0.229, 0.224, 0.225], |
|
'num_classes': 1000 |
|
} |
|
|
|
|
|
timm_resnest_encoders = { |
|
'timm-resnest14d': { |
|
'encoder': ResNestEncoder, |
|
"pretrained_settings": pretrained_settings["timm-resnest14d"], |
|
'params': { |
|
'out_channels': (3, 64, 256, 512, 1024, 2048), |
|
'block': ResNestBottleneck, |
|
'layers': [1, 1, 1, 1], |
|
'stem_type': 'deep', |
|
'stem_width': 32, |
|
'avg_down': True, |
|
'base_width': 64, |
|
'cardinality': 1, |
|
'block_args': {'radix': 2, 'avd': True, 'avd_first': False} |
|
} |
|
}, |
|
'timm-resnest26d': { |
|
'encoder': ResNestEncoder, |
|
"pretrained_settings": pretrained_settings["timm-resnest26d"], |
|
'params': { |
|
'out_channels': (3, 64, 256, 512, 1024, 2048), |
|
'block': ResNestBottleneck, |
|
'layers': [2, 2, 2, 2], |
|
'stem_type': 'deep', |
|
'stem_width': 32, |
|
'avg_down': True, |
|
'base_width': 64, |
|
'cardinality': 1, |
|
'block_args': {'radix': 2, 'avd': True, 'avd_first': False} |
|
} |
|
}, |
|
'timm-resnest50d': { |
|
'encoder': ResNestEncoder, |
|
"pretrained_settings": pretrained_settings["timm-resnest50d"], |
|
'params': { |
|
'out_channels': (3, 64, 256, 512, 1024, 2048), |
|
'block': ResNestBottleneck, |
|
'layers': [3, 4, 6, 3], |
|
'stem_type': 'deep', |
|
'stem_width': 32, |
|
'avg_down': True, |
|
'base_width': 64, |
|
'cardinality': 1, |
|
'block_args': {'radix': 2, 'avd': True, 'avd_first': False} |
|
} |
|
}, |
|
'timm-resnest101e': { |
|
'encoder': ResNestEncoder, |
|
"pretrained_settings": pretrained_settings["timm-resnest101e"], |
|
'params': { |
|
'out_channels': (3, 128, 256, 512, 1024, 2048), |
|
'block': ResNestBottleneck, |
|
'layers': [3, 4, 23, 3], |
|
'stem_type': 'deep', |
|
'stem_width': 64, |
|
'avg_down': True, |
|
'base_width': 64, |
|
'cardinality': 1, |
|
'block_args': {'radix': 2, 'avd': True, 'avd_first': False} |
|
} |
|
}, |
|
'timm-resnest200e': { |
|
'encoder': ResNestEncoder, |
|
"pretrained_settings": pretrained_settings["timm-resnest200e"], |
|
'params': { |
|
'out_channels': (3, 128, 256, 512, 1024, 2048), |
|
'block': ResNestBottleneck, |
|
'layers': [3, 24, 36, 3], |
|
'stem_type': 'deep', |
|
'stem_width': 64, |
|
'avg_down': True, |
|
'base_width': 64, |
|
'cardinality': 1, |
|
'block_args': {'radix': 2, 'avd': True, 'avd_first': False} |
|
} |
|
}, |
|
'timm-resnest269e': { |
|
'encoder': ResNestEncoder, |
|
"pretrained_settings": pretrained_settings["timm-resnest269e"], |
|
'params': { |
|
'out_channels': (3, 128, 256, 512, 1024, 2048), |
|
'block': ResNestBottleneck, |
|
'layers': [3, 30, 48, 8], |
|
'stem_type': 'deep', |
|
'stem_width': 64, |
|
'avg_down': True, |
|
'base_width': 64, |
|
'cardinality': 1, |
|
'block_args': {'radix': 2, 'avd': True, 'avd_first': False} |
|
}, |
|
}, |
|
'timm-resnest50d_4s2x40d': { |
|
'encoder': ResNestEncoder, |
|
"pretrained_settings": pretrained_settings["timm-resnest50d_4s2x40d"], |
|
'params': { |
|
'out_channels': (3, 64, 256, 512, 1024, 2048), |
|
'block': ResNestBottleneck, |
|
'layers': [3, 4, 6, 3], |
|
'stem_type': 'deep', |
|
'stem_width': 32, |
|
'avg_down': True, |
|
'base_width': 40, |
|
'cardinality': 2, |
|
'block_args': {'radix': 4, 'avd': True, 'avd_first': True} |
|
} |
|
}, |
|
'timm-resnest50d_1s4x24d': { |
|
'encoder': ResNestEncoder, |
|
"pretrained_settings": pretrained_settings["timm-resnest50d_1s4x24d"], |
|
'params': { |
|
'out_channels': (3, 64, 256, 512, 1024, 2048), |
|
'block': ResNestBottleneck, |
|
'layers': [3, 4, 6, 3], |
|
'stem_type': 'deep', |
|
'stem_width': 32, |
|
'avg_down': True, |
|
'base_width': 24, |
|
'cardinality': 4, |
|
'block_args': {'radix': 1, 'avd': True, 'avd_first': True} |
|
} |
|
} |
|
} |
|
|