|
from ._base import EncoderMixin |
|
from timm.models.resnet import ResNet |
|
from timm.models.res2net import Bottle2neck |
|
import torch.nn as nn |
|
|
|
|
|
class Res2NetEncoder(ResNet, EncoderMixin): |
|
def __init__(self, out_channels, depth=5, **kwargs): |
|
super().__init__(**kwargs) |
|
self._depth = depth |
|
self._out_channels = out_channels |
|
self._in_channels = 3 |
|
|
|
del self.fc |
|
del self.global_pool |
|
|
|
def get_stages(self): |
|
return [ |
|
nn.Identity(), |
|
nn.Sequential(self.conv1, self.bn1, self.act1), |
|
nn.Sequential(self.maxpool, self.layer1), |
|
self.layer2, |
|
self.layer3, |
|
self.layer4, |
|
] |
|
|
|
def make_dilated(self, stage_list, dilation_list): |
|
raise ValueError("Res2Net encoders do not support dilated mode") |
|
|
|
def forward(self, x): |
|
stages = self.get_stages() |
|
|
|
features = [] |
|
for i in range(self._depth + 1): |
|
x = stages[i](x) |
|
features.append(x) |
|
|
|
return features |
|
|
|
def load_state_dict(self, state_dict, **kwargs): |
|
state_dict.pop("fc.bias", None) |
|
state_dict.pop("fc.weight", None) |
|
super().load_state_dict(state_dict, **kwargs) |
|
|
|
|
|
res2net_weights = { |
|
'timm-res2net50_26w_4s': { |
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_4s-06e79181.pth' |
|
}, |
|
'timm-res2net50_48w_2s': { |
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_48w_2s-afed724a.pth' |
|
}, |
|
'timm-res2net50_14w_8s': { |
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_14w_8s-6527dddc.pth', |
|
}, |
|
'timm-res2net50_26w_6s': { |
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_6s-19041792.pth', |
|
}, |
|
'timm-res2net50_26w_8s': { |
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_8s-2c7c9f12.pth', |
|
}, |
|
'timm-res2net101_26w_4s': { |
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net101_26w_4s-02a759a1.pth', |
|
}, |
|
'timm-res2next50': { |
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2next50_4s-6ef7e7bf.pth', |
|
} |
|
} |
|
|
|
pretrained_settings = {} |
|
for model_name, sources in res2net_weights.items(): |
|
pretrained_settings[model_name] = {} |
|
for source_name, source_url in sources.items(): |
|
pretrained_settings[model_name][source_name] = { |
|
"url": source_url, |
|
'input_size': [3, 224, 224], |
|
'input_range': [0, 1], |
|
'mean': [0.485, 0.456, 0.406], |
|
'std': [0.229, 0.224, 0.225], |
|
'num_classes': 1000 |
|
} |
|
|
|
|
|
timm_res2net_encoders = { |
|
'timm-res2net50_26w_4s': { |
|
'encoder': Res2NetEncoder, |
|
"pretrained_settings": pretrained_settings["timm-res2net50_26w_4s"], |
|
'params': { |
|
'out_channels': (3, 64, 256, 512, 1024, 2048), |
|
'block': Bottle2neck, |
|
'layers': [3, 4, 6, 3], |
|
'base_width': 26, |
|
'block_args': {'scale': 4} |
|
}, |
|
}, |
|
'timm-res2net101_26w_4s': { |
|
'encoder': Res2NetEncoder, |
|
"pretrained_settings": pretrained_settings["timm-res2net101_26w_4s"], |
|
'params': { |
|
'out_channels': (3, 64, 256, 512, 1024, 2048), |
|
'block': Bottle2neck, |
|
'layers': [3, 4, 23, 3], |
|
'base_width': 26, |
|
'block_args': {'scale': 4} |
|
}, |
|
}, |
|
'timm-res2net50_26w_6s': { |
|
'encoder': Res2NetEncoder, |
|
"pretrained_settings": pretrained_settings["timm-res2net50_26w_6s"], |
|
'params': { |
|
'out_channels': (3, 64, 256, 512, 1024, 2048), |
|
'block': Bottle2neck, |
|
'layers': [3, 4, 6, 3], |
|
'base_width': 26, |
|
'block_args': {'scale': 6} |
|
}, |
|
}, |
|
'timm-res2net50_26w_8s': { |
|
'encoder': Res2NetEncoder, |
|
"pretrained_settings": pretrained_settings["timm-res2net50_26w_8s"], |
|
'params': { |
|
'out_channels': (3, 64, 256, 512, 1024, 2048), |
|
'block': Bottle2neck, |
|
'layers': [3, 4, 6, 3], |
|
'base_width': 26, |
|
'block_args': {'scale': 8} |
|
}, |
|
}, |
|
'timm-res2net50_48w_2s': { |
|
'encoder': Res2NetEncoder, |
|
"pretrained_settings": pretrained_settings["timm-res2net50_48w_2s"], |
|
'params': { |
|
'out_channels': (3, 64, 256, 512, 1024, 2048), |
|
'block': Bottle2neck, |
|
'layers': [3, 4, 6, 3], |
|
'base_width': 48, |
|
'block_args': {'scale': 2} |
|
}, |
|
}, |
|
'timm-res2net50_14w_8s': { |
|
'encoder': Res2NetEncoder, |
|
"pretrained_settings": pretrained_settings["timm-res2net50_14w_8s"], |
|
'params': { |
|
'out_channels': (3, 64, 256, 512, 1024, 2048), |
|
'block': Bottle2neck, |
|
'layers': [3, 4, 6, 3], |
|
'base_width': 14, |
|
'block_args': {'scale': 8} |
|
}, |
|
}, |
|
'timm-res2next50': { |
|
'encoder': Res2NetEncoder, |
|
"pretrained_settings": pretrained_settings["timm-res2next50"], |
|
'params': { |
|
'out_channels': (3, 64, 256, 512, 1024, 2048), |
|
'block': Bottle2neck, |
|
'layers': [3, 4, 6, 3], |
|
'base_width': 4, |
|
'cardinality': 8, |
|
'block_args': {'scale': 4} |
|
}, |
|
} |
|
} |
|
|