|
from functools import partial |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from timm.models.efficientnet import EfficientNet |
|
from timm.models.efficientnet import decode_arch_def, round_channels, default_cfgs |
|
from timm.models.layers.activations import Swish |
|
|
|
from ._base import EncoderMixin |
|
|
|
|
|
def get_efficientnet_kwargs(channel_multiplier=1.0, depth_multiplier=1.0, drop_rate=0.2): |
|
"""Creates an EfficientNet model. |
|
Ref impl: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.py |
|
Paper: https://arxiv.org/abs/1905.11946 |
|
EfficientNet params |
|
name: (channel_multiplier, depth_multiplier, resolution, dropout_rate) |
|
'efficientnet-b0': (1.0, 1.0, 224, 0.2), |
|
'efficientnet-b1': (1.0, 1.1, 240, 0.2), |
|
'efficientnet-b2': (1.1, 1.2, 260, 0.3), |
|
'efficientnet-b3': (1.2, 1.4, 300, 0.3), |
|
'efficientnet-b4': (1.4, 1.8, 380, 0.4), |
|
'efficientnet-b5': (1.6, 2.2, 456, 0.4), |
|
'efficientnet-b6': (1.8, 2.6, 528, 0.5), |
|
'efficientnet-b7': (2.0, 3.1, 600, 0.5), |
|
'efficientnet-b8': (2.2, 3.6, 672, 0.5), |
|
'efficientnet-l2': (4.3, 5.3, 800, 0.5), |
|
Args: |
|
channel_multiplier: multiplier to number of channels per layer |
|
depth_multiplier: multiplier to number of repeats per stage |
|
""" |
|
arch_def = [ |
|
['ds_r1_k3_s1_e1_c16_se0.25'], |
|
['ir_r2_k3_s2_e6_c24_se0.25'], |
|
['ir_r2_k5_s2_e6_c40_se0.25'], |
|
['ir_r3_k3_s2_e6_c80_se0.25'], |
|
['ir_r3_k5_s1_e6_c112_se0.25'], |
|
['ir_r4_k5_s2_e6_c192_se0.25'], |
|
['ir_r1_k3_s1_e6_c320_se0.25'], |
|
] |
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def, depth_multiplier), |
|
num_features=round_channels(1280, channel_multiplier, 8, None), |
|
stem_size=32, |
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier), |
|
act_layer=Swish, |
|
drop_rate=drop_rate, |
|
drop_path_rate=0.2, |
|
) |
|
return model_kwargs |
|
|
|
def gen_efficientnet_lite_kwargs(channel_multiplier=1.0, depth_multiplier=1.0, drop_rate=0.2): |
|
"""Creates an EfficientNet-Lite model. |
|
|
|
Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite |
|
Paper: https://arxiv.org/abs/1905.11946 |
|
|
|
EfficientNet params |
|
name: (channel_multiplier, depth_multiplier, resolution, dropout_rate) |
|
'efficientnet-lite0': (1.0, 1.0, 224, 0.2), |
|
'efficientnet-lite1': (1.0, 1.1, 240, 0.2), |
|
'efficientnet-lite2': (1.1, 1.2, 260, 0.3), |
|
'efficientnet-lite3': (1.2, 1.4, 280, 0.3), |
|
'efficientnet-lite4': (1.4, 1.8, 300, 0.3), |
|
|
|
Args: |
|
channel_multiplier: multiplier to number of channels per layer |
|
depth_multiplier: multiplier to number of repeats per stage |
|
""" |
|
arch_def = [ |
|
['ds_r1_k3_s1_e1_c16'], |
|
['ir_r2_k3_s2_e6_c24'], |
|
['ir_r2_k5_s2_e6_c40'], |
|
['ir_r3_k3_s2_e6_c80'], |
|
['ir_r3_k5_s1_e6_c112'], |
|
['ir_r4_k5_s2_e6_c192'], |
|
['ir_r1_k3_s1_e6_c320'], |
|
] |
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def, depth_multiplier, fix_first_last=True), |
|
num_features=1280, |
|
stem_size=32, |
|
fix_stem=True, |
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier), |
|
act_layer=nn.ReLU6, |
|
drop_rate=drop_rate, |
|
drop_path_rate=0.2, |
|
) |
|
return model_kwargs |
|
|
|
class EfficientNetBaseEncoder(EfficientNet, EncoderMixin): |
|
|
|
def __init__(self, stage_idxs, out_channels, depth=5, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
self._stage_idxs = stage_idxs |
|
self._out_channels = out_channels |
|
self._depth = depth |
|
self._in_channels = 3 |
|
|
|
del self.classifier |
|
|
|
def get_stages(self): |
|
return [ |
|
nn.Identity(), |
|
nn.Sequential(self.conv_stem, self.bn1, self.act1), |
|
self.blocks[:self._stage_idxs[0]], |
|
self.blocks[self._stage_idxs[0]:self._stage_idxs[1]], |
|
self.blocks[self._stage_idxs[1]:self._stage_idxs[2]], |
|
self.blocks[self._stage_idxs[2]:], |
|
] |
|
|
|
def forward(self, x): |
|
stages = self.get_stages() |
|
|
|
features = [] |
|
for i in range(self._depth + 1): |
|
x = stages[i](x) |
|
features.append(x) |
|
|
|
return features |
|
|
|
def load_state_dict(self, state_dict, **kwargs): |
|
state_dict.pop("classifier.bias", None) |
|
state_dict.pop("classifier.weight", None) |
|
super().load_state_dict(state_dict, **kwargs) |
|
|
|
|
|
class EfficientNetEncoder(EfficientNetBaseEncoder): |
|
|
|
def __init__(self, stage_idxs, out_channels, depth=5, channel_multiplier=1.0, depth_multiplier=1.0, drop_rate=0.2): |
|
kwargs = get_efficientnet_kwargs(channel_multiplier, depth_multiplier, drop_rate) |
|
super().__init__(stage_idxs, out_channels, depth, **kwargs) |
|
|
|
|
|
class EfficientNetLiteEncoder(EfficientNetBaseEncoder): |
|
|
|
def __init__(self, stage_idxs, out_channels, depth=5, channel_multiplier=1.0, depth_multiplier=1.0, drop_rate=0.2): |
|
kwargs = gen_efficientnet_lite_kwargs(channel_multiplier, depth_multiplier, drop_rate) |
|
super().__init__(stage_idxs, out_channels, depth, **kwargs) |
|
|
|
|
|
def prepare_settings(settings): |
|
return { |
|
"mean": settings["mean"], |
|
"std": settings["std"], |
|
"url": settings["url"], |
|
"input_range": (0, 1), |
|
"input_space": "RGB", |
|
} |
|
|
|
|
|
timm_efficientnet_encoders = { |
|
|
|
"timm-efficientnet-b0": { |
|
"encoder": EfficientNetEncoder, |
|
"pretrained_settings": { |
|
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_b0"]), |
|
"advprop": prepare_settings(default_cfgs["tf_efficientnet_b0_ap"]), |
|
"noisy-student": prepare_settings(default_cfgs["tf_efficientnet_b0_ns"]), |
|
}, |
|
"params": { |
|
"out_channels": (3, 32, 24, 40, 112, 320), |
|
"stage_idxs": (2, 3, 5), |
|
"channel_multiplier": 1.0, |
|
"depth_multiplier": 1.0, |
|
"drop_rate": 0.2, |
|
}, |
|
}, |
|
|
|
"timm-efficientnet-b1": { |
|
"encoder": EfficientNetEncoder, |
|
"pretrained_settings": { |
|
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_b1"]), |
|
"advprop": prepare_settings(default_cfgs["tf_efficientnet_b1_ap"]), |
|
"noisy-student": prepare_settings(default_cfgs["tf_efficientnet_b1_ns"]), |
|
}, |
|
"params": { |
|
"out_channels": (3, 32, 24, 40, 112, 320), |
|
"stage_idxs": (2, 3, 5), |
|
"channel_multiplier": 1.0, |
|
"depth_multiplier": 1.1, |
|
"drop_rate": 0.2, |
|
}, |
|
}, |
|
|
|
"timm-efficientnet-b2": { |
|
"encoder": EfficientNetEncoder, |
|
"pretrained_settings": { |
|
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_b2"]), |
|
"advprop": prepare_settings(default_cfgs["tf_efficientnet_b2_ap"]), |
|
"noisy-student": prepare_settings(default_cfgs["tf_efficientnet_b2_ns"]), |
|
}, |
|
"params": { |
|
"out_channels": (3, 32, 24, 48, 120, 352), |
|
"stage_idxs": (2, 3, 5), |
|
"channel_multiplier": 1.1, |
|
"depth_multiplier": 1.2, |
|
"drop_rate": 0.3, |
|
}, |
|
}, |
|
|
|
"timm-efficientnet-b3": { |
|
"encoder": EfficientNetEncoder, |
|
"pretrained_settings": { |
|
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_b3"]), |
|
"advprop": prepare_settings(default_cfgs["tf_efficientnet_b3_ap"]), |
|
"noisy-student": prepare_settings(default_cfgs["tf_efficientnet_b3_ns"]), |
|
}, |
|
"params": { |
|
"out_channels": (3, 40, 32, 48, 136, 384), |
|
"stage_idxs": (2, 3, 5), |
|
"channel_multiplier": 1.2, |
|
"depth_multiplier": 1.4, |
|
"drop_rate": 0.3, |
|
}, |
|
}, |
|
|
|
"timm-efficientnet-b4": { |
|
"encoder": EfficientNetEncoder, |
|
"pretrained_settings": { |
|
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_b4"]), |
|
"advprop": prepare_settings(default_cfgs["tf_efficientnet_b4_ap"]), |
|
"noisy-student": prepare_settings(default_cfgs["tf_efficientnet_b4_ns"]), |
|
}, |
|
"params": { |
|
"out_channels": (3, 48, 32, 56, 160, 448), |
|
"stage_idxs": (2, 3, 5), |
|
"channel_multiplier": 1.4, |
|
"depth_multiplier": 1.8, |
|
"drop_rate": 0.4, |
|
}, |
|
}, |
|
|
|
"timm-efficientnet-b5": { |
|
"encoder": EfficientNetEncoder, |
|
"pretrained_settings": { |
|
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_b5"]), |
|
"advprop": prepare_settings(default_cfgs["tf_efficientnet_b5_ap"]), |
|
"noisy-student": prepare_settings(default_cfgs["tf_efficientnet_b5_ns"]), |
|
}, |
|
"params": { |
|
"out_channels": (3, 48, 40, 64, 176, 512), |
|
"stage_idxs": (2, 3, 5), |
|
"channel_multiplier": 1.6, |
|
"depth_multiplier": 2.2, |
|
"drop_rate": 0.4, |
|
}, |
|
}, |
|
|
|
"timm-efficientnet-b6": { |
|
"encoder": EfficientNetEncoder, |
|
"pretrained_settings": { |
|
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_b6"]), |
|
"advprop": prepare_settings(default_cfgs["tf_efficientnet_b6_ap"]), |
|
"noisy-student": prepare_settings(default_cfgs["tf_efficientnet_b6_ns"]), |
|
}, |
|
"params": { |
|
"out_channels": (3, 56, 40, 72, 200, 576), |
|
"stage_idxs": (2, 3, 5), |
|
"channel_multiplier": 1.8, |
|
"depth_multiplier": 2.6, |
|
"drop_rate": 0.5, |
|
}, |
|
}, |
|
|
|
"timm-efficientnet-b7": { |
|
"encoder": EfficientNetEncoder, |
|
"pretrained_settings": { |
|
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_b7"]), |
|
"advprop": prepare_settings(default_cfgs["tf_efficientnet_b7_ap"]), |
|
"noisy-student": prepare_settings(default_cfgs["tf_efficientnet_b7_ns"]), |
|
}, |
|
"params": { |
|
"out_channels": (3, 64, 48, 80, 224, 640), |
|
"stage_idxs": (2, 3, 5), |
|
"channel_multiplier": 2.0, |
|
"depth_multiplier": 3.1, |
|
"drop_rate": 0.5, |
|
}, |
|
}, |
|
|
|
"timm-efficientnet-b8": { |
|
"encoder": EfficientNetEncoder, |
|
"pretrained_settings": { |
|
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_b8"]), |
|
"advprop": prepare_settings(default_cfgs["tf_efficientnet_b8_ap"]), |
|
}, |
|
"params": { |
|
"out_channels": (3, 72, 56, 88, 248, 704), |
|
"stage_idxs": (2, 3, 5), |
|
"channel_multiplier": 2.2, |
|
"depth_multiplier": 3.6, |
|
"drop_rate": 0.5, |
|
}, |
|
}, |
|
|
|
"timm-efficientnet-l2": { |
|
"encoder": EfficientNetEncoder, |
|
"pretrained_settings": { |
|
"noisy-student": prepare_settings(default_cfgs["tf_efficientnet_l2_ns"]), |
|
}, |
|
"params": { |
|
"out_channels": (3, 136, 104, 176, 480, 1376), |
|
"stage_idxs": (2, 3, 5), |
|
"channel_multiplier": 4.3, |
|
"depth_multiplier": 5.3, |
|
"drop_rate": 0.5, |
|
}, |
|
}, |
|
|
|
"timm-tf_efficientnet_lite0": { |
|
"encoder": EfficientNetLiteEncoder, |
|
"pretrained_settings": { |
|
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_lite0"]), |
|
}, |
|
"params": { |
|
"out_channels": (3, 32, 24, 40, 112, 320), |
|
"stage_idxs": (2, 3, 5), |
|
"channel_multiplier": 1.0, |
|
"depth_multiplier": 1.0, |
|
"drop_rate": 0.2, |
|
}, |
|
}, |
|
|
|
"timm-tf_efficientnet_lite1": { |
|
"encoder": EfficientNetLiteEncoder, |
|
"pretrained_settings": { |
|
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_lite1"]), |
|
}, |
|
"params": { |
|
"out_channels": (3, 32, 24, 40, 112, 320), |
|
"stage_idxs": (2, 3, 5), |
|
"channel_multiplier": 1.0, |
|
"depth_multiplier": 1.1, |
|
"drop_rate": 0.2, |
|
}, |
|
}, |
|
|
|
"timm-tf_efficientnet_lite2": { |
|
"encoder": EfficientNetLiteEncoder, |
|
"pretrained_settings": { |
|
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_lite2"]), |
|
}, |
|
"params": { |
|
"out_channels": (3, 32, 24, 48, 120, 352), |
|
"stage_idxs": (2, 3, 5), |
|
"channel_multiplier": 1.1, |
|
"depth_multiplier": 1.2, |
|
"drop_rate": 0.3, |
|
}, |
|
}, |
|
|
|
"timm-tf_efficientnet_lite3": { |
|
"encoder": EfficientNetLiteEncoder, |
|
"pretrained_settings": { |
|
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_lite3"]), |
|
}, |
|
"params": { |
|
"out_channels": (3, 32, 32, 48, 136, 384), |
|
"stage_idxs": (2, 3, 5), |
|
"channel_multiplier": 1.2, |
|
"depth_multiplier": 1.4, |
|
"drop_rate": 0.3, |
|
}, |
|
}, |
|
|
|
"timm-tf_efficientnet_lite4": { |
|
"encoder": EfficientNetLiteEncoder, |
|
"pretrained_settings": { |
|
"imagenet": prepare_settings(default_cfgs["tf_efficientnet_lite4"]), |
|
}, |
|
"params": { |
|
"out_channels": (3, 32, 32, 56, 160, 448), |
|
"stage_idxs": (2, 3, 5), |
|
"channel_multiplier": 1.4, |
|
"depth_multiplier": 1.8, |
|
"drop_rate": 0.4, |
|
}, |
|
}, |
|
} |
|
|