Text Generation
PEFT
Safetensors
mistral
conversational
Eval Results
File size: 5,454 Bytes
9bbf6f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "gpuType": "A100"
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "LqFeWyhye38d"
      },
      "outputs": [],
      "source": [
        "!pip install -q -U huggingface_hub peft transformers torch accelerate"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "!nvidia-smi\n"
      ],
      "metadata": {
        "id": "y5FkaLZcfAHm"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "import torch\n",
        "from peft import PeftModel, PeftConfig\n",
        "from transformers import AutoModelForCausalLM, AutoTokenizer\n"
      ],
      "metadata": {
        "id": "EKXLttEgf06g"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "!huggingface-cli login"
      ],
      "metadata": {
        "id": "Q_8EpxK4gUZI"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "peft_model_id = \"dfurman/llama-2-13b-dolphin-peft\"\n",
        "config = PeftConfig.from_pretrained(peft_model_id)\n",
        "\n",
        "tokenizer = AutoTokenizer.from_pretrained(\n",
        "    config.base_model_name_or_path,\n",
        "    use_auth_token=True\n",
        ")\n",
        "tokenizer.pad_token = tokenizer.eos_token\n",
        "model = AutoModelForCausalLM.from_pretrained(\n",
        "    config.base_model_name_or_path,\n",
        "    torch_dtype=torch.bfloat16,\n",
        "    device_map=\"auto\",\n",
        "    use_auth_token=True,\n",
        ")\n",
        "\n",
        "# Load the Lora model\n",
        "model = PeftModel.from_pretrained(model, peft_model_id)"
      ],
      "metadata": {
        "id": "AGxrbUqDgD8D"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "def llama_generate(\n",
        "    model: AutoModelForCausalLM,\n",
        "    tokenizer: AutoTokenizer,\n",
        "    prompt: str,\n",
        "    max_new_tokens: int = 128,\n",
        "    temperature: int = 1.0,\n",
        ") -> str:\n",
        "    \"\"\"\n",
        "    Initialize the pipeline\n",
        "    Uses Hugging Face GenerationConfig defaults\n",
        "        https://huggingface.co/docs/transformers/v4.29.1/en/main_classes/text_generation#transformers.GenerationConfig\n",
        "    Args:\n",
        "        model (transformers.AutoModelForCausalLM): Falcon model for text generation\n",
        "        tokenizer (transformers.AutoTokenizer): Tokenizer for model\n",
        "        prompt (str): Prompt for text generation\n",
        "        max_new_tokens (int, optional): Max new tokens after the prompt to generate. Defaults to 128.\n",
        "        temperature (float, optional): The value used to modulate the next token probabilities.\n",
        "            Defaults to 1.0\n",
        "    \"\"\"\n",
        "    device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
        "\n",
        "    inputs = tokenizer(\n",
        "        [prompt],\n",
        "        return_tensors=\"pt\",\n",
        "        return_token_type_ids=False,\n",
        "    ).to(\n",
        "        device\n",
        "    )  # tokenize inputs, load on device\n",
        "\n",
        "    # when running Torch modules in lower precision, it is best practice to use the torch.autocast context manager.\n",
        "    with torch.autocast(\"cuda\", dtype=torch.bfloat16):\n",
        "        response = model.generate(\n",
        "            **inputs,\n",
        "            max_new_tokens=max_new_tokens,\n",
        "            temperature=temperature,\n",
        "            return_dict_in_generate=True,\n",
        "            eos_token_id=tokenizer.eos_token_id,\n",
        "            pad_token_id=tokenizer.pad_token_id,\n",
        "        )\n",
        "\n",
        "    decoded_output = tokenizer.decode(\n",
        "        response[\"sequences\"][0],\n",
        "        skip_special_tokens=True,\n",
        "    )  # grab output in natural language\n",
        "\n",
        "    return decoded_output[len(prompt) :]  # remove prompt from output\n"
      ],
      "metadata": {
        "id": "OQD_s1-egFjB"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "prompt = \"Your are a helpful AI assistant. Write me a numbered list of things to do in New York City.\\n\"\n",
        "\n",
        "response = llama_generate(\n",
        "    model,\n",
        "    tokenizer,\n",
        "    prompt,\n",
        "    max_new_tokens=150,\n",
        "    temperature=0.92,\n",
        ")\n",
        "\n",
        "print(response)"
      ],
      "metadata": {
        "id": "mKXUkc6BgjdL"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [],
      "metadata": {
        "id": "JOgPF_UdgnWr"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}