--- library_name: transformers base_model: llama_small_config.json tags: - generated_from_trainer model-index: - name: llama-3.2-350M-fourier_multiplication_dataset results: [] --- # llama-3.2-350M-fourier_multiplication_dataset This model is a fine-tuned version of [llama_small_config.json](https://huggingface.co/llama_small_config.json) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.6476 | 0.1415 | 1000 | 2.5967 | | 2.0109 | 0.2831 | 2000 | 2.0067 | | 2.1092 | 0.4246 | 3000 | 2.1034 | | 1.9086 | 0.5661 | 4000 | 1.9051 | | 1.8537 | 0.7076 | 5000 | 1.8473 | | 1.7953 | 0.8492 | 6000 | 1.7943 | | 1.7858 | 0.9907 | 7000 | 1.7836 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.3.1+cu118 - Datasets 3.2.0 - Tokenizers 0.21.0