Text Generation
Transformers
Safetensors
Serbian
mistral
mergekit
Merge
text-generation-inference
conversational
4-bit precision
bitsandbytes
datatab commited on
Commit
2946bc8
·
verified ·
1 Parent(s): cc8d54e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +188 -198
README.md CHANGED
@@ -1,202 +1,192 @@
1
  ---
 
 
 
 
 
2
  library_name: transformers
3
  tags:
4
- - unsloth
 
 
 
 
 
 
 
 
 
 
 
5
  ---
6
-
7
- # Model Card for Model ID
8
-
9
- <!-- Provide a quick summary of what the model is/does. -->
10
-
11
-
12
-
13
- ## Model Details
14
-
15
- ### Model Description
16
-
17
- <!-- Provide a longer summary of what this model is. -->
18
-
19
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
20
-
21
- - **Developed by:** [More Information Needed]
22
- - **Funded by [optional]:** [More Information Needed]
23
- - **Shared by [optional]:** [More Information Needed]
24
- - **Model type:** [More Information Needed]
25
- - **Language(s) (NLP):** [More Information Needed]
26
- - **License:** [More Information Needed]
27
- - **Finetuned from model [optional]:** [More Information Needed]
28
-
29
- ### Model Sources [optional]
30
-
31
- <!-- Provide the basic links for the model. -->
32
-
33
- - **Repository:** [More Information Needed]
34
- - **Paper [optional]:** [More Information Needed]
35
- - **Demo [optional]:** [More Information Needed]
36
-
37
- ## Uses
38
-
39
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
40
-
41
- ### Direct Use
42
-
43
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
44
-
45
- [More Information Needed]
46
-
47
- ### Downstream Use [optional]
48
-
49
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
50
-
51
- [More Information Needed]
52
-
53
- ### Out-of-Scope Use
54
-
55
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
56
-
57
- [More Information Needed]
58
-
59
- ## Bias, Risks, and Limitations
60
-
61
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
62
-
63
- [More Information Needed]
64
-
65
- ### Recommendations
66
-
67
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
68
-
69
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
70
-
71
- ## How to Get Started with the Model
72
-
73
- Use the code below to get started with the model.
74
-
75
- [More Information Needed]
76
-
77
- ## Training Details
78
-
79
- ### Training Data
80
-
81
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
82
-
83
- [More Information Needed]
84
-
85
- ### Training Procedure
86
-
87
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
88
-
89
- #### Preprocessing [optional]
90
-
91
- [More Information Needed]
92
-
93
-
94
- #### Training Hyperparameters
95
-
96
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
97
-
98
- #### Speeds, Sizes, Times [optional]
99
-
100
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
101
-
102
- [More Information Needed]
103
-
104
- ## Evaluation
105
-
106
- <!-- This section describes the evaluation protocols and provides the results. -->
107
-
108
- ### Testing Data, Factors & Metrics
109
-
110
- #### Testing Data
111
-
112
- <!-- This should link to a Dataset Card if possible. -->
113
-
114
- [More Information Needed]
115
-
116
- #### Factors
117
-
118
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
119
-
120
- [More Information Needed]
121
-
122
- #### Metrics
123
-
124
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
125
-
126
- [More Information Needed]
127
-
128
- ### Results
129
-
130
- [More Information Needed]
131
-
132
- #### Summary
133
-
134
-
135
-
136
- ## Model Examination [optional]
137
-
138
- <!-- Relevant interpretability work for the model goes here -->
139
-
140
- [More Information Needed]
141
-
142
- ## Environmental Impact
143
-
144
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
145
-
146
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
147
-
148
- - **Hardware Type:** [More Information Needed]
149
- - **Hours used:** [More Information Needed]
150
- - **Cloud Provider:** [More Information Needed]
151
- - **Compute Region:** [More Information Needed]
152
- - **Carbon Emitted:** [More Information Needed]
153
-
154
- ## Technical Specifications [optional]
155
-
156
- ### Model Architecture and Objective
157
-
158
- [More Information Needed]
159
-
160
- ### Compute Infrastructure
161
-
162
- [More Information Needed]
163
-
164
- #### Hardware
165
-
166
- [More Information Needed]
167
-
168
- #### Software
169
-
170
- [More Information Needed]
171
-
172
- ## Citation [optional]
173
-
174
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
175
-
176
- **BibTeX:**
177
-
178
- [More Information Needed]
179
-
180
- **APA:**
181
-
182
- [More Information Needed]
183
-
184
- ## Glossary [optional]
185
-
186
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
187
-
188
- [More Information Needed]
189
-
190
- ## More Information [optional]
191
-
192
- [More Information Needed]
193
-
194
- ## Model Card Authors [optional]
195
-
196
- [More Information Needed]
197
-
198
- ## Model Card Contact
199
-
200
- [More Information Needed]
201
-
202
-
 
1
  ---
2
+ base_model:
3
+ - mlabonne/AlphaMonarch-7B
4
+ - datatab/Yugo55-GPT-v4
5
+ - datatab/Yugo55-GPT-DPO-v1-chkp-300
6
+ - NousResearch/Nous-Hermes-2-Mistral-7B-DPO
7
  library_name: transformers
8
  tags:
9
+ - mergekit
10
+ - merge
11
+ - text-generation-inference
12
+ - transformers
13
+ - mistral
14
+ license: mit
15
+ language:
16
+ - sr
17
+ datasets:
18
+ - datatab/alpaca-cleaned-serbian-full
19
+ - datatab/ultrafeedback_binarized
20
+ - datatab/open-orca-slim-serbian
21
  ---
22
+ # Yugo55A-GPT
23
+
24
+ - **Developed by:** datatab
25
+ - **License:** mit
26
+
27
+
28
+ ## 🏆 Results
29
+ > Results obtained through the Serbian LLM evaluation, released by Aleksa Gordić: [serbian-llm-eval](https://github.com/gordicaleksa/serbian-llm-eval)
30
+ > * Evaluation was conducted on a 4-bit version of the model due to hardware resource constraints.
31
+
32
+ <table>
33
+ <tr>
34
+ <th>MODEL</th>
35
+ <th>ARC-E</th>
36
+ <th>ARC-C</th>
37
+ <th>Hellaswag</th>
38
+ <th>BoolQ</th>
39
+ <th>Winogrande</th>
40
+ <th>OpenbookQA</th>
41
+ <th>PiQA</th>
42
+ </tr>
43
+ <tr>
44
+ <td><a href="https://huggingface.co/datatab/Yugo55-GPT-v4-4bit/">*Yugo55-GPT-v4-4bit</a></td>
45
+ <td>51.41</td>
46
+ <td>36.00</td>
47
+ <td>57.51</td>
48
+ <td>80.92</td>
49
+ <td><strong>65.75</strong></td>
50
+ <td>34.70</td>
51
+ <td><strong>70.54</strong></td>
52
+ </tr>
53
+ <tr>
54
+ <td><a href="https://huggingface.co/datatab/Yugo55A-GPT/">Yugo55A-GPT</a></td>
55
+ <td><strong>51.52</strong></td>
56
+ <td><strong>37.78</strong></td>
57
+ <td><strong>57.52</strong></td>
58
+ <td><strong>84.40</strong></td>
59
+ <td>65.43</td>
60
+ <td><strong>35.60</strong></td>
61
+ <td>69.43</td>
62
+ </tr>
63
+ </table>
64
+
65
+
66
+ # 🔗 Merge Details
67
+
68
+ ### Merge Method
69
+ > This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
70
+ > This model was merged using the [linear](https://arxiv.org/abs/2203.05482) merge method.
71
+
72
+ ### Models Merged
73
+
74
+ The following models were included in the merge:
75
+ * [datatab/Yugo55-GPT-v4](https://huggingface.co/datatab/Yugo55-GPT-v4)
76
+ * [datatab/Yugo55-GPT-DPO-v1-chkp-300](https://huggingface.co/datatab/Yugo55-GPT-DPO-v1-chkp-300)
77
+ * [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B)
78
+ * [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO)
79
+
80
+ ## 🧩 Configuration
81
+
82
+ The following YAML configuration was used to produce this model:
83
+
84
+ ```yaml
85
+ models:
86
+ - model: datatab/Yugo55-GPT-v4
87
+ parameters:
88
+ weight: 1.0
89
+ - model: datatab/Yugo55-GPT-DPO-v1-chkp-300
90
+ parameters:
91
+ weight: 1.0
92
+ - model: mlabonne/AlphaMonarch-7B
93
+ parameters:
94
+ weight: 0.5
95
+ - model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
96
+ parameters:
97
+ weight: 0.5
98
+ merge_method: linear
99
+ dtype: float16
100
+ ```
101
+
102
+
103
+ ## 💻 Usage
104
+ ```terminal
105
+ !pip -q install git+https://github.com/huggingface/transformers # need to install from github
106
+ !pip install -q datasets loralib sentencepiece
107
+ !pip -q install bitsandbytes accelerate
108
+ ```
109
+
110
+ ```python
111
+ from IPython.display import HTML, display
112
+
113
+ def set_css():
114
+ display(HTML('''
115
+ <style>
116
+ pre {
117
+ white-space: pre-wrap;
118
+ }
119
+ </style>
120
+ '''))
121
+ get_ipython().events.register('pre_run_cell', set_css)
122
+
123
+ ```
124
+
125
+ ```python
126
+ import torch
127
+ import transformers
128
+ from transformers import AutoTokenizer, AutoModelForCausalLM
129
+
130
+ model = AutoModelForCausalLM.from_pretrained(
131
+ "datatab/Yugo55A-GPT", torch_dtype="auto"
132
+ )
133
+
134
+ tokenizer = AutoTokenizer.from_pretrained(
135
+ "datatab/Yugo55A-GPT", torch_dtype="auto"
136
+ )
137
+
138
+
139
+ ```
140
+
141
+ ```python
142
+ from typing import Optional
143
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
144
+
145
+
146
+ def generate(
147
+ user_content: str, system_content: Optional[str] = ""
148
+ ) -> str:
149
+ system_content = "Ispod je uputstvo koje opisuje zadatak, upareno sa unosom koji pruža dodatni kontekst. Napišite odgovor koji na odgovarajući način kompletira zahtev."
150
+
151
+ messages = [
152
+ {
153
+ "role": "system",
154
+ "content": system_content,
155
+ },
156
+ {"role": "user", "content": user_content},
157
+ ]
158
+
159
+ tokenized_chat = tokenizer.apply_chat_template(
160
+ messages, tokenize=True, add_generation_prompt=True, return_tensors="pt"
161
+ ).to("cuda")
162
+
163
+ text_streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
164
+ output = model.generate(
165
+ tokenized_chat,
166
+ streamer=text_streamer,
167
+ max_new_tokens=2048,
168
+ temperature=0.1,
169
+ repetition_penalty=1.11,
170
+ top_p=0.92,
171
+ top_k=1000,
172
+ pad_token_id=tokenizer.pad_token_id,
173
+ eos_token_id=tokenizer.eos_token_id,
174
+ do_sample=True,
175
+ )
176
+
177
+ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
178
+
179
+
180
+ ```
181
+
182
+ ```python
183
+ generate("Nabroj mi sve planete suncevog sistemai reci mi koja je najveca planeta")
184
+ ```
185
+
186
+ ```python
187
+ generate("Koja je razlika između lame, vikune i alpake?")
188
+ ```
189
+
190
+ ```python
191
+ generate("Napišite kratku e-poruku Semu Altmanu dajući razloge za GPT-4 otvorenog koda")
192
+ ```