Datasets:

ArXiv:
zzh99 commited on
Commit
6c924fb
·
verified ·
1 Parent(s): 8c25abd

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -0
README.md ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ This is the official data repository for [RadIR: A Scalable Framework for Multi-Grained Medical Image Retrieval via Radiology Report Mining](https://www.arxiv.org/abs/2503.04653).
2
+
3
+ We mine image-paired report to extract findings on diverse anatomy structures, and quantify the multi-grained image-image relevance via [RaTEScore](https://arxiv.org/abs/2406.16845).
4
+ Specifically, we have extended two public datasets for multi-grained medical image retrieval task:
5
+ - MIMIC-IR is extended from [MIMIC-CXR](https://physionet.org/content/mimic-cxr/2.1.0/), containing 377,110 images and x anatomy structures.
6
+ - CTRATE-IR is extended from [CTRATE](https://huggingface.co/datasets/ibrahimhamamci/CT-RATE), containing 25,692 images and 48 anatomy structures.
7
+
8
+ A simple demo to read the data from CTRATE-IR:
9
+ ```
10
+ import pandas as pd
11
+ import numpy as np
12
+
13
+ anatomy_condition = 'bone'
14
+ sample_A_idx = 10
15
+ sample_B_idx = 20
16
+
17
+ df = pd.read_csv(f'CTRATE-IR/anatomy/train_entity/{anatomy_condition}.csv')
18
+ id_ls = df.iloc[:,0].tolist()
19
+ findings_ls = df.iloc[:,1].tolist()
20
+
21
+ simi_tab = np.load(f'CTRATE-IR/anatomy/train_ratescore/{anatomy_condition}.npy')
22
+
23
+ print(f'Sample {id_ls[sample_A_idx]} findings on {anatomy_condition}: {findings_ls[sample_A_idx]}')
24
+ print(f'Sample {id_ls[sample_B_idx]} findings on {anatomy_condition}: {findings_ls[sample_B_idx]}')
25
+ print(f'Relevance score: {simi_tab[sample_A_idx, sample_B_idx]}')
26
+ ```
27
+
28
+ We also provide the whole image-level relevance quantified based on their entire reports:
29
+ ```
30
+ import os
31
+ import json
32
+ import numpy as np
33
+
34
+ sample_A_idx = 10
35
+ sample_B_idx = 20
36
+
37
+ with open('CTRATE-IR/train_filtered.jsonl', 'r') as f:
38
+ data = f.readlines()
39
+ data = [json.loads(l) for l in data]
40
+
41
+ simi_tab = np.load(f'CTRATE-IR/CT_train_ratescore.npy')
42
+
43
+ sample_A_id = os.path.basename(data[sample_A_idx]['img_path'])
44
+ sample_B_id = os.path.basename(data[sample_B_idx]['img_path'])
45
+
46
+ sample_A_report = os.path.basename(data[sample_A_idx]['text'])
47
+ sample_B_report = os.path.basename(data[sample_B_idx]['text'])
48
+
49
+ print(f'Sample {sample_A_id} reports: {sample_A_report}\n')
50
+ print(f'Sample {sample_B_id} reports: {sample_B_report}\n')
51
+ print(f'Whole image relevance score: {simi_tab[sample_A_idx, sample_B_idx]}')
52
+ ```
53
+
54
+ For raw image data, you can download them from [CTRATE](https://huggingface.co/datasets/ibrahimhamamci/CT-RATE) (or [RadGenome-ChestCT](https://huggingface.co/datasets/RadGenome/RadGenome-ChestCT)) and [MIMIC-CXR](https://physionet.org/content/mimic-cxr/2.1.0/). We keep all the sample id consistent so you can easily find them.