File size: 858 Bytes
0e557a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31a6ea5
f84c0c4
ef7b334
 
 
 
54bd431
ef7b334
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
---
dataset_info:
  features:
  - name: query
    dtype: string
  - name: positive
    dtype: string
  - name: negative
    dtype: string
  splits:
  - name: train
    num_bytes: 2766980301
    num_examples: 1391986
  download_size: 1589194354
  dataset_size: 2766980301
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---

Training Data For Paper: ["Pooling And Attention: What Are Effective Designs For LLM-Based Embedding Models?"](https://arxiv.org/abs/2409.02727)

Citation: 
```
@misc{poolingattentioneffectivedesigns,
      title={Pooling And Attention: What Are Effective Designs For LLM-Based Embedding Models?}, 
      author={Yixuan Tang and Yi Yang},
      year={2024},
      eprint={2409.02727},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2409.02727}, 
}

```