siavava commited on
Commit
2383458
·
verified ·
0 Parent(s):

add only relevant data stuff, update readme

Browse files
Files changed (7) hide show
  1. .gitattributes +1 -0
  2. README.md +9 -0
  3. analytics.ipynb +399 -0
  4. counts.csv +3 -0
  5. index.csv +3 -0
  6. index.py +123 -0
  7. urls +0 -0
.gitattributes ADDED
@@ -0,0 +1 @@
 
 
1
+ *.csv filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # AI/Tech Dataset
3
+
4
+ This dataset is a collection of AI/tech articles scraped from the web.
5
+
6
+ - [analytics.ipynb](analytics.ipynb) - Notebook containing some details about the dataset and how to load it.
7
+ - [index.csv](./index.csv) - CSV file containing all the data. You can load this with `pandas.read_csv`.
8
+ - [counts.csv](./counts.csv) - CSV file containing the counts of each year.
9
+ - For raw text files, see the [scraper repo](https://github.com/siavava/scrape.hs)
analytics.ipynb ADDED
@@ -0,0 +1,399 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Data Analytics for the Corpus\n",
8
+ "\n",
9
+ "## Author: Amittai Siavava"
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "markdown",
14
+ "metadata": {},
15
+ "source": [
16
+ "### Load the CSV metadata"
17
+ ]
18
+ },
19
+ {
20
+ "cell_type": "code",
21
+ "execution_count": 3,
22
+ "metadata": {},
23
+ "outputs": [],
24
+ "source": [
25
+ "import numpy as np\n",
26
+ "import pandas as pd\n",
27
+ "import matplotlib.pyplot as plt\n",
28
+ "from collections import Counter\n"
29
+ ]
30
+ },
31
+ {
32
+ "cell_type": "code",
33
+ "execution_count": 6,
34
+ "metadata": {},
35
+ "outputs": [
36
+ {
37
+ "data": {
38
+ "text/html": [
39
+ "<div>\n",
40
+ "<style scoped>\n",
41
+ " .dataframe tbody tr th:only-of-type {\n",
42
+ " vertical-align: middle;\n",
43
+ " }\n",
44
+ "\n",
45
+ " .dataframe tbody tr th {\n",
46
+ " vertical-align: top;\n",
47
+ " }\n",
48
+ "\n",
49
+ " .dataframe thead th {\n",
50
+ " text-align: right;\n",
51
+ " }\n",
52
+ "</style>\n",
53
+ "<table border=\"1\" class=\"dataframe\">\n",
54
+ " <thead>\n",
55
+ " <tr style=\"text-align: right;\">\n",
56
+ " <th></th>\n",
57
+ " <th>id</th>\n",
58
+ " <th>year</th>\n",
59
+ " <th>title</th>\n",
60
+ " <th>url</th>\n",
61
+ " <th>text</th>\n",
62
+ " </tr>\n",
63
+ " </thead>\n",
64
+ " <tbody>\n",
65
+ " <tr>\n",
66
+ " <th>0</th>\n",
67
+ " <td>0</td>\n",
68
+ " <td>2023.0</td>\n",
69
+ " <td>\"MIT Technology Review\"</td>\n",
70
+ " <td>\"https://www.technologyreview.com\"</td>\n",
71
+ " <td>\"Featured Topics Newsletters Events Podcasts F...</td>\n",
72
+ " </tr>\n",
73
+ " <tr>\n",
74
+ " <th>1</th>\n",
75
+ " <td>1</td>\n",
76
+ " <td>2023.0</td>\n",
77
+ " <td>\"WIRED - The Latest in Technology, Science, Cu...</td>\n",
78
+ " <td>\"https://www.wired.com\"</td>\n",
79
+ " <td>\"Open Navigation Menu To revisit this article,...</td>\n",
80
+ " </tr>\n",
81
+ " <tr>\n",
82
+ " <th>2</th>\n",
83
+ " <td>2</td>\n",
84
+ " <td>2019.0</td>\n",
85
+ " <td>\"The Verge\"</td>\n",
86
+ " <td>\"https://www.theverge.com\"</td>\n",
87
+ " <td>\"The Verge homepage The Verge The Verge logo.\\...</td>\n",
88
+ " </tr>\n",
89
+ " <tr>\n",
90
+ " <th>3</th>\n",
91
+ " <td>3</td>\n",
92
+ " <td>2023.0</td>\n",
93
+ " <td>\"TechCrunch | Startup and Technology News\"</td>\n",
94
+ " <td>\"https://www.techcrunch.com\"</td>\n",
95
+ " <td>\"WeWork reportedly on the verge of filing for ...</td>\n",
96
+ " </tr>\n",
97
+ " <tr>\n",
98
+ " <th>4</th>\n",
99
+ " <td>4</td>\n",
100
+ " <td>2022.0</td>\n",
101
+ " <td>\"A new vision of artificial intelligence for t...</td>\n",
102
+ " <td>\"https://www.technologyreview.com/2022/04/22/1...</td>\n",
103
+ " <td>\"Featured Topics Newsletters Events Podcasts A...</td>\n",
104
+ " </tr>\n",
105
+ " <tr>\n",
106
+ " <th>5</th>\n",
107
+ " <td>5</td>\n",
108
+ " <td>2022.0</td>\n",
109
+ " <td>\"The scientist who co-created CRISPR isn’t rul...</td>\n",
110
+ " <td>\"https://www.technologyreview.com/2022/04/26/1...</td>\n",
111
+ " <td>\"Featured Topics Newsletters Events Podcasts F...</td>\n",
112
+ " </tr>\n",
113
+ " <tr>\n",
114
+ " <th>6</th>\n",
115
+ " <td>6</td>\n",
116
+ " <td>2022.0</td>\n",
117
+ " <td>\"These fast, cheap tests could help us coexist...</td>\n",
118
+ " <td>\"https://www.technologyreview.com/2022/04/27/1...</td>\n",
119
+ " <td>\"Featured Topics Newsletters Events Podcasts F...</td>\n",
120
+ " </tr>\n",
121
+ " <tr>\n",
122
+ " <th>7</th>\n",
123
+ " <td>7</td>\n",
124
+ " <td>2022.0</td>\n",
125
+ " <td>\"Tackling multiple tasks with a single visual ...</td>\n",
126
+ " <td>\"http://www.deepmind.com/blog/tackling-multipl...</td>\n",
127
+ " <td>\"DeepMind Search Search Close DeepMind About O...</td>\n",
128
+ " </tr>\n",
129
+ " <tr>\n",
130
+ " <th>8</th>\n",
131
+ " <td>8</td>\n",
132
+ " <td>2019.0</td>\n",
133
+ " <td>\"About - Google DeepMind\"</td>\n",
134
+ " <td>\"https://www.deepmind.com/about\"</td>\n",
135
+ " <td>\"DeepMind Search Search Close DeepMind About O...</td>\n",
136
+ " </tr>\n",
137
+ " <tr>\n",
138
+ " <th>9</th>\n",
139
+ " <td>9</td>\n",
140
+ " <td>2023.0</td>\n",
141
+ " <td>\"Blog - Google DeepMind\"</td>\n",
142
+ " <td>\"https://www.deepmind.com/blog-categories/appl...</td>\n",
143
+ " <td>\"DeepMind Search Search Close DeepMind About O...</td>\n",
144
+ " </tr>\n",
145
+ " <tr>\n",
146
+ " <th>10</th>\n",
147
+ " <td>10</td>\n",
148
+ " <td>2022.0</td>\n",
149
+ " <td>\"Accelerating fusion science through learned p...</td>\n",
150
+ " <td>\"https://www.deepmind.com/blog/accelerating-fu...</td>\n",
151
+ " <td>\"DeepMind Search Search Close DeepMind About O...</td>\n",
152
+ " </tr>\n",
153
+ " <tr>\n",
154
+ " <th>11</th>\n",
155
+ " <td>11</td>\n",
156
+ " <td>2022.0</td>\n",
157
+ " <td>\"DeepMind’s latest research at ICLR 2022 - Goo...</td>\n",
158
+ " <td>\"https://www.deepmind.com/blog/deepminds-lates...</td>\n",
159
+ " <td>\"DeepMind Search Search Close DeepMind About O...</td>\n",
160
+ " </tr>\n",
161
+ " <tr>\n",
162
+ " <th>12</th>\n",
163
+ " <td>12</td>\n",
164
+ " <td>2022.0</td>\n",
165
+ " <td>\"MuZero’s first step from research into the re...</td>\n",
166
+ " <td>\"https://www.deepmind.com/blog/muzeros-first-s...</td>\n",
167
+ " <td>\"DeepMind Search Search Close DeepMind About O...</td>\n",
168
+ " </tr>\n",
169
+ " <tr>\n",
170
+ " <th>13</th>\n",
171
+ " <td>13</td>\n",
172
+ " <td>2022.0</td>\n",
173
+ " <td>\"Predicting the past with Ithaca - Google Deep...</td>\n",
174
+ " <td>\"https://www.deepmind.com/blog/predicting-the-...</td>\n",
175
+ " <td>\"DeepMind Search Search Close DeepMind About O...</td>\n",
176
+ " </tr>\n",
177
+ " <tr>\n",
178
+ " <th>14</th>\n",
179
+ " <td>14</td>\n",
180
+ " <td>2022.0</td>\n",
181
+ " <td>\"Tackling multiple tasks with a single visual ...</td>\n",
182
+ " <td>\"https://www.deepmind.com/blog/tackling-multip...</td>\n",
183
+ " <td>\"DeepMind Search Search Close DeepMind About O...</td>\n",
184
+ " </tr>\n",
185
+ " <tr>\n",
186
+ " <th>15</th>\n",
187
+ " <td>15</td>\n",
188
+ " <td>2016.0</td>\n",
189
+ " <td>\"AlphaGo - Google DeepMind\"</td>\n",
190
+ " <td>\"https://www.deepmind.com/research/highlighted...</td>\n",
191
+ " <td>\"DeepMind Search Search Close DeepMind About O...</td>\n",
192
+ " </tr>\n",
193
+ " <tr>\n",
194
+ " <th>17</th>\n",
195
+ " <td>17</td>\n",
196
+ " <td>2023.0</td>\n",
197
+ " <td>\"Responsibility &amp; Safety - Google DeepMind\"</td>\n",
198
+ " <td>\"https://www.deepmind.com/safety-and-ethics\"</td>\n",
199
+ " <td>\"DeepMind Search Search Close DeepMind About O...</td>\n",
200
+ " </tr>\n",
201
+ " <tr>\n",
202
+ " <th>18</th>\n",
203
+ " <td>18</td>\n",
204
+ " <td>2022.0</td>\n",
205
+ " <td>\"This Week’s Awesome Tech Stories From Around ...</td>\n",
206
+ " <td>\"https://singularityhub.com/2022/04/16/this-we...</td>\n",
207
+ " <td>\"Topics AI Biotech Computing Space Energy Futu...</td>\n",
208
+ " </tr>\n",
209
+ " <tr>\n",
210
+ " <th>19</th>\n",
211
+ " <td>19</td>\n",
212
+ " <td>2022.0</td>\n",
213
+ " <td>\"There's Now an Algorithm to Help Workers Avoi...</td>\n",
214
+ " <td>\"https://singularityhub.com/2022/04/18/theres-...</td>\n",
215
+ " <td>\"Topics AI Biotech Computing Space Energy Futu...</td>\n",
216
+ " </tr>\n",
217
+ " <tr>\n",
218
+ " <th>20</th>\n",
219
+ " <td>20</td>\n",
220
+ " <td>2022.0</td>\n",
221
+ " <td>\"This Week’s Awesome Tech Stories From Around ...</td>\n",
222
+ " <td>\"https://singularityhub.com/2022/04/23/this-we...</td>\n",
223
+ " <td>\"Topics AI Biotech Computing Space Energy Futu...</td>\n",
224
+ " </tr>\n",
225
+ " </tbody>\n",
226
+ "</table>\n",
227
+ "</div>"
228
+ ],
229
+ "text/plain": [
230
+ " id year title \\\n",
231
+ "0 0 2023.0 \"MIT Technology Review\" \n",
232
+ "1 1 2023.0 \"WIRED - The Latest in Technology, Science, Cu... \n",
233
+ "2 2 2019.0 \"The Verge\" \n",
234
+ "3 3 2023.0 \"TechCrunch | Startup and Technology News\" \n",
235
+ "4 4 2022.0 \"A new vision of artificial intelligence for t... \n",
236
+ "5 5 2022.0 \"The scientist who co-created CRISPR isn’t rul... \n",
237
+ "6 6 2022.0 \"These fast, cheap tests could help us coexist... \n",
238
+ "7 7 2022.0 \"Tackling multiple tasks with a single visual ... \n",
239
+ "8 8 2019.0 \"About - Google DeepMind\" \n",
240
+ "9 9 2023.0 \"Blog - Google DeepMind\" \n",
241
+ "10 10 2022.0 \"Accelerating fusion science through learned p... \n",
242
+ "11 11 2022.0 \"DeepMind’s latest research at ICLR 2022 - Goo... \n",
243
+ "12 12 2022.0 \"MuZero’s first step from research into the re... \n",
244
+ "13 13 2022.0 \"Predicting the past with Ithaca - Google Deep... \n",
245
+ "14 14 2022.0 \"Tackling multiple tasks with a single visual ... \n",
246
+ "15 15 2016.0 \"AlphaGo - Google DeepMind\" \n",
247
+ "17 17 2023.0 \"Responsibility & Safety - Google DeepMind\" \n",
248
+ "18 18 2022.0 \"This Week’s Awesome Tech Stories From Around ... \n",
249
+ "19 19 2022.0 \"There's Now an Algorithm to Help Workers Avoi... \n",
250
+ "20 20 2022.0 \"This Week’s Awesome Tech Stories From Around ... \n",
251
+ "\n",
252
+ " url \\\n",
253
+ "0 \"https://www.technologyreview.com\" \n",
254
+ "1 \"https://www.wired.com\" \n",
255
+ "2 \"https://www.theverge.com\" \n",
256
+ "3 \"https://www.techcrunch.com\" \n",
257
+ "4 \"https://www.technologyreview.com/2022/04/22/1... \n",
258
+ "5 \"https://www.technologyreview.com/2022/04/26/1... \n",
259
+ "6 \"https://www.technologyreview.com/2022/04/27/1... \n",
260
+ "7 \"http://www.deepmind.com/blog/tackling-multipl... \n",
261
+ "8 \"https://www.deepmind.com/about\" \n",
262
+ "9 \"https://www.deepmind.com/blog-categories/appl... \n",
263
+ "10 \"https://www.deepmind.com/blog/accelerating-fu... \n",
264
+ "11 \"https://www.deepmind.com/blog/deepminds-lates... \n",
265
+ "12 \"https://www.deepmind.com/blog/muzeros-first-s... \n",
266
+ "13 \"https://www.deepmind.com/blog/predicting-the-... \n",
267
+ "14 \"https://www.deepmind.com/blog/tackling-multip... \n",
268
+ "15 \"https://www.deepmind.com/research/highlighted... \n",
269
+ "17 \"https://www.deepmind.com/safety-and-ethics\" \n",
270
+ "18 \"https://singularityhub.com/2022/04/16/this-we... \n",
271
+ "19 \"https://singularityhub.com/2022/04/18/theres-... \n",
272
+ "20 \"https://singularityhub.com/2022/04/23/this-we... \n",
273
+ "\n",
274
+ " text \n",
275
+ "0 \"Featured Topics Newsletters Events Podcasts F... \n",
276
+ "1 \"Open Navigation Menu To revisit this article,... \n",
277
+ "2 \"The Verge homepage The Verge The Verge logo.\\... \n",
278
+ "3 \"WeWork reportedly on the verge of filing for ... \n",
279
+ "4 \"Featured Topics Newsletters Events Podcasts A... \n",
280
+ "5 \"Featured Topics Newsletters Events Podcasts F... \n",
281
+ "6 \"Featured Topics Newsletters Events Podcasts F... \n",
282
+ "7 \"DeepMind Search Search Close DeepMind About O... \n",
283
+ "8 \"DeepMind Search Search Close DeepMind About O... \n",
284
+ "9 \"DeepMind Search Search Close DeepMind About O... \n",
285
+ "10 \"DeepMind Search Search Close DeepMind About O... \n",
286
+ "11 \"DeepMind Search Search Close DeepMind About O... \n",
287
+ "12 \"DeepMind Search Search Close DeepMind About O... \n",
288
+ "13 \"DeepMind Search Search Close DeepMind About O... \n",
289
+ "14 \"DeepMind Search Search Close DeepMind About O... \n",
290
+ "15 \"DeepMind Search Search Close DeepMind About O... \n",
291
+ "17 \"DeepMind Search Search Close DeepMind About O... \n",
292
+ "18 \"Topics AI Biotech Computing Space Energy Futu... \n",
293
+ "19 \"Topics AI Biotech Computing Space Energy Futu... \n",
294
+ "20 \"Topics AI Biotech Computing Space Energy Futu... "
295
+ ]
296
+ },
297
+ "execution_count": 6,
298
+ "metadata": {},
299
+ "output_type": "execute_result"
300
+ }
301
+ ],
302
+ "source": [
303
+ "df = pd.read_csv(\"index.csv\")\n",
304
+ "df.dropna(inplace=True)\n",
305
+ "df.head(20)\n"
306
+ ]
307
+ },
308
+ {
309
+ "cell_type": "code",
310
+ "execution_count": 11,
311
+ "metadata": {},
312
+ "outputs": [
313
+ {
314
+ "name": "stdout",
315
+ "output_type": "stream",
316
+ "text": [
317
+ "unique_years = [2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023]\n"
318
+ ]
319
+ },
320
+ {
321
+ "data": {
322
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAitUlEQVR4nO3df2xV9f3H8deVtpdS22tb5F7uKNhl1Uxb/FFNpTrppBQZtTO44YQZl7AFRaoVCNLxB52bLbIIbBDZYAQQwuqS2Y1ERcrUOqzMWiW2uDmNVYv22g3rva3WW4TP9w/D+e62/Lr0tv20PB/JSXbPfd/bc/LZHc+d3tvrMsYYAQAAWOSCoT4AAACA3ggUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANaJG+oDOBfHjx/Xxx9/rOTkZLlcrqE+HAAAcBaMMers7JTf79cFF5z+GsmwDJSPP/5YGRkZQ30YAADgHLS2tmrChAmnnRmWgZKcnCzp6xNMSUkZ4qMBAABnIxQKKSMjw/l3/HSGZaCc+LVOSkoKgQIAwDBzNm/P4E2yAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwTtxQHwAAAJAuWf50vx7//qpZMToSO0R9BeWjjz7Sj3/8Y6Wnp2vMmDG66qqr1NjY6NxvjFFFRYX8fr8SExNVUFCgQ4cORTxHOBxWaWmpxo4dq6SkJJWUlOjw4cP9PxsAADAiRBUoHR0duuGGGxQfH69nn31Wb731lh577DFddNFFzszq1au1Zs0abdiwQQ0NDfL5fJo+fbo6OzudmbKyMtXU1Ki6ulr79+9XV1eXiouLdezYsZidGAAAGL5cxhhztsPLly/Xyy+/rL///e8nvd8YI7/fr7KyMj300EOSvr5a4vV69eijj2rBggUKBoO6+OKLtWPHDt1xxx2SpI8//lgZGRl65plnNGPGjDMeRygUksfjUTAYVEpKytkePgAA1joffsUTzb/fUV1B2b17t6699lr98Ic/1Lhx43T11Vdr8+bNzv0tLS0KBAIqKipy9rndbk2dOlX19fWSpMbGRh09ejRixu/3Kzs725npLRwOKxQKRWwAAGDkiipQ3nvvPW3cuFFZWVl67rnndM899+j+++/XE088IUkKBAKSJK/XG/E4r9fr3BcIBJSQkKDU1NRTzvRWVVUlj8fjbBkZGdEcNgAAGGaiCpTjx4/rmmuuUWVlpa6++motWLBAP/vZz7Rx48aIOZfLFXHbGNNnX2+nmykvL1cwGHS21tbWaA4bAAAMM1EFyvjx43X55ZdH7Pv2t7+tDz/8UJLk8/kkqc+VkPb2dueqis/nU09Pjzo6Ok4505vb7VZKSkrEBgAARq6oAuWGG27Q22+/HbHv3//+tyZNmiRJyszMlM/nU21trXN/T0+P6urqlJ+fL0nKzc1VfHx8xExbW5uam5udGQAAcH6L6g+1Pfjgg8rPz1dlZaXmzJmjV199VZs2bdKmTZskff2rnbKyMlVWViorK0tZWVmqrKzUmDFjNHfuXEmSx+PR/PnztWTJEqWnpystLU1Lly5VTk6OCgsLY3+GAABg2IkqUK677jrV1NSovLxcDz/8sDIzM7Vu3TrNmzfPmVm2bJm6u7u1cOFCdXR0KC8vT3v37lVycrIzs3btWsXFxWnOnDnq7u7WtGnTtG3bNo0aNSp2ZwYAAIatqP4Oii34OygAgJGGv4MSiS8LBAAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgnbihPgAAABB7lyx/ul+Pf3/VrBgdybnhCgoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA60QVKBUVFXK5XBGbz+dz7jfGqKKiQn6/X4mJiSooKNChQ4ciniMcDqu0tFRjx45VUlKSSkpKdPjw4dicDQAAGBGivoJyxRVXqK2tzdmampqc+1avXq01a9Zow4YNamhokM/n0/Tp09XZ2enMlJWVqaamRtXV1dq/f7+6urpUXFysY8eOxeaMAADAsBf1X5KNi4uLuGpygjFG69at04oVKzR79mxJ0vbt2+X1erVr1y4tWLBAwWBQW7Zs0Y4dO1RYWChJ2rlzpzIyMrRv3z7NmDGjn6cDAABGgqivoLzzzjvy+/3KzMzUj370I7333nuSpJaWFgUCARUVFTmzbrdbU6dOVX19vSSpsbFRR48ejZjx+/3Kzs52Zk4mHA4rFApFbAAAYOSKKlDy8vL0xBNP6LnnntPmzZsVCASUn5+vI0eOKBAISJK8Xm/EY7xer3NfIBBQQkKCUlNTTzlzMlVVVfJ4PM6WkZERzWEDAIBhJqpAmTlzpm6//Xbl5OSosLBQTz/99RcRbd++3ZlxuVwRjzHG9NnX25lmysvLFQwGna21tTWawwYAAMNMvz5mnJSUpJycHL3zzjvO+1J6Xwlpb293rqr4fD719PSoo6PjlDMn43a7lZKSErEBAICRq1+BEg6H9c9//lPjx49XZmamfD6famtrnft7enpUV1en/Px8SVJubq7i4+MjZtra2tTc3OzMAAAARPUpnqVLl+rWW2/VxIkT1d7erl/96lcKhUK6++675XK5VFZWpsrKSmVlZSkrK0uVlZUaM2aM5s6dK0nyeDyaP3++lixZovT0dKWlpWnp0qXOr4wAAACkKAPl8OHDuvPOO/Xf//5XF198sa6//nodOHBAkyZNkiQtW7ZM3d3dWrhwoTo6OpSXl6e9e/cqOTnZeY61a9cqLi5Oc+bMUXd3t6ZNm6Zt27Zp1KhRsT0zAAAwbLmMMWaoDyJaoVBIHo9HwWCQ96MAAEaES5Y/3a/Hv79q1oA+XyxE8+8338UDAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsEzfUBwAAwHB0yfKn+/X491fNitGRjExcQQEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADW6VegVFVVyeVyqayszNlnjFFFRYX8fr8SExNVUFCgQ4cORTwuHA6rtLRUY8eOVVJSkkpKSnT48OH+HAoAABhBzjlQGhoatGnTJk2ePDli/+rVq7VmzRpt2LBBDQ0N8vl8mj59ujo7O52ZsrIy1dTUqLq6Wvv371dXV5eKi4t17Nixcz8TAAAwYpxToHR1dWnevHnavHmzUlNTnf3GGK1bt04rVqzQ7NmzlZ2dre3bt+uLL77Qrl27JEnBYFBbtmzRY489psLCQl199dXauXOnmpqatG/fvticFQAAGNbOKVDuu+8+zZo1S4WFhRH7W1paFAgEVFRU5Oxzu92aOnWq6uvrJUmNjY06evRoxIzf71d2drYz01s4HFYoFIrYAADAyBUX7QOqq6v1+uuvq6Ghoc99gUBAkuT1eiP2e71effDBB85MQkJCxJWXEzMnHt9bVVWVfvGLX0R7qAAAYJiK6gpKa2urHnjgAe3cuVOjR48+5ZzL5Yq4bYzps6+3082Ul5crGAw6W2trazSHDQAAhpmoAqWxsVHt7e3Kzc1VXFyc4uLiVFdXp9/+9reKi4tzrpz0vhLS3t7u3Ofz+dTT06OOjo5TzvTmdruVkpISsQEAgJErqkCZNm2ampqadPDgQWe79tprNW/ePB08eFDf/OY35fP5VFtb6zymp6dHdXV1ys/PlyTl5uYqPj4+YqatrU3Nzc3ODAAAOL9F9R6U5ORkZWdnR+xLSkpSenq6s7+srEyVlZXKyspSVlaWKisrNWbMGM2dO1eS5PF4NH/+fC1ZskTp6elKS0vT0qVLlZOT0+dNtwAA4PwU9Ztkz2TZsmXq7u7WwoUL1dHRoby8PO3du1fJycnOzNq1axUXF6c5c+aou7tb06ZN07Zt2zRq1KhYHw4AABiG+h0oL774YsRtl8uliooKVVRUnPIxo0eP1vr167V+/fr+/ngAADAC8V08AADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsE5UgbJx40ZNnjxZKSkpSklJ0ZQpU/Tss8869xtjVFFRIb/fr8TERBUUFOjQoUMRzxEOh1VaWqqxY8cqKSlJJSUlOnz4cGzOBgAAjAhRBcqECRO0atUqvfbaa3rttdd088036/vf/74TIatXr9aaNWu0YcMGNTQ0yOfzafr06ers7HSeo6ysTDU1Naqurtb+/fvV1dWl4uJiHTt2LLZnBgAAhq2oAuXWW2/V9773PV166aW69NJL9cgjj+jCCy/UgQMHZIzRunXrtGLFCs2ePVvZ2dnavn27vvjiC+3atUuSFAwGtWXLFj322GMqLCzU1VdfrZ07d6qpqUn79u0bkBMEAADDzzm/B+XYsWOqrq7W559/rilTpqilpUWBQEBFRUXOjNvt1tSpU1VfXy9Jamxs1NGjRyNm/H6/srOznRkAAIC4aB/Q1NSkKVOm6Msvv9SFF16ompoaXX755U5geL3eiHmv16sPPvhAkhQIBJSQkKDU1NQ+M4FA4JQ/MxwOKxwOO7dDoVC0hw0AAIaRqK+gXHbZZTp48KAOHDige++9V3fffbfeeust536XyxUxb4zps6+3M81UVVXJ4/E4W0ZGRrSHDQAAhpGor6AkJCToW9/6liTp2muvVUNDg37zm9/ooYcekvT1VZLx48c78+3t7c5VFZ/Pp56eHnV0dERcRWlvb1d+fv4pf2Z5ebkWL17s3A6FQkQKACBqlyx/+pwf+/6qWTE8EpxJv/8OijFG4XBYmZmZ8vl8qq2tde7r6elRXV2dEx+5ubmKj4+PmGlra1Nzc/NpA8XtdjsfbT6xAQCAkSuqKyg///nPNXPmTGVkZKizs1PV1dV68cUXtWfPHrlcLpWVlamyslJZWVnKyspSZWWlxowZo7lz50qSPB6P5s+fryVLlig9PV1paWlaunSpcnJyVFhYOCAnCAAAhp+oAuWTTz7RXXfdpba2Nnk8Hk2ePFl79uzR9OnTJUnLli1Td3e3Fi5cqI6ODuXl5Wnv3r1KTk52nmPt2rWKi4vTnDlz1N3drWnTpmnbtm0aNWpUbM8MAAAMW1EFypYtW057v8vlUkVFhSoqKk45M3r0aK1fv17r16+P5kcDAIDzCN/FAwAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDpRBUpVVZWuu+46JScna9y4cbrtttv09ttvR8wYY1RRUSG/36/ExEQVFBTo0KFDETPhcFilpaUaO3askpKSVFJSosOHD/f/bAAAwIgQVaDU1dXpvvvu04EDB1RbW6uvvvpKRUVF+vzzz52Z1atXa82aNdqwYYMaGhrk8/k0ffp0dXZ2OjNlZWWqqalRdXW19u/fr66uLhUXF+vYsWOxOzMAADBsxUUzvGfPnojbW7du1bhx49TY2KibbrpJxhitW7dOK1as0OzZsyVJ27dvl9fr1a5du7RgwQIFg0Ft2bJFO3bsUGFhoSRp586dysjI0L59+zRjxowYnRoAABiu+vUelGAwKElKS0uTJLW0tCgQCKioqMiZcbvdmjp1qurr6yVJjY2NOnr0aMSM3+9Xdna2M9NbOBxWKBSK2AAAwMh1zoFijNHixYt14403Kjs7W5IUCAQkSV6vN2LW6/U69wUCASUkJCg1NfWUM71VVVXJ4/E4W0ZGxrkeNgAAGAbOOVAWLVqkN998U3/84x/73OdyuSJuG2P67OvtdDPl5eUKBoPO1traeq6HDQAAhoFzCpTS0lLt3r1bL7zwgiZMmODs9/l8ktTnSkh7e7tzVcXn86mnp0cdHR2nnOnN7XYrJSUlYgMAACNXVIFijNGiRYv01FNP6fnnn1dmZmbE/ZmZmfL5fKqtrXX29fT0qK6uTvn5+ZKk3NxcxcfHR8y0tbWpubnZmQEAAOe3qD7Fc99992nXrl3661//quTkZOdKicfjUWJiolwul8rKylRZWamsrCxlZWWpsrJSY8aM0dy5c53Z+fPna8mSJUpPT1daWpqWLl2qnJwc51M9AADg/BZVoGzcuFGSVFBQELF/69at+slPfiJJWrZsmbq7u7Vw4UJ1dHQoLy9Pe/fuVXJysjO/du1axcXFac6cOeru7ta0adO0bds2jRo1qn9nAwAARoSoAsUYc8YZl8uliooKVVRUnHJm9OjRWr9+vdavXx/NjwcAAOcJvosHAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgnai+LBAAgMF0yfKn+/X491fNitGRYLBxBQUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdfg7KACAmOHvliBWuIICAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrRB0oL730km699Vb5/X65XC795S9/ibjfGKOKigr5/X4lJiaqoKBAhw4dipgJh8MqLS3V2LFjlZSUpJKSEh0+fLhfJwIAAEaOqAPl888/15VXXqkNGzac9P7Vq1drzZo12rBhgxoaGuTz+TR9+nR1dnY6M2VlZaqpqVF1dbX279+vrq4uFRcX69ixY+d+JgAAYMSIi/YBM2fO1MyZM096nzFG69at04oVKzR79mxJ0vbt2+X1erVr1y4tWLBAwWBQW7Zs0Y4dO1RYWChJ2rlzpzIyMrRv3z7NmDGjH6cDAABGgpi+B6WlpUWBQEBFRUXOPrfbralTp6q+vl6S1NjYqKNHj0bM+P1+ZWdnOzO9hcNhhUKhiA0AAIxcMQ2UQCAgSfJ6vRH7vV6vc18gEFBCQoJSU1NPOdNbVVWVPB6Ps2VkZMTysAEAgGUG5FM8Lpcr4rYxps++3k43U15ermAw6Gytra0xO1YAAGCfmAaKz+eTpD5XQtrb252rKj6fTz09Pero6DjlTG9ut1spKSkRGwAAGLliGiiZmZny+Xyqra119vX09Kiurk75+fmSpNzcXMXHx0fMtLW1qbm52ZkBAADnt6g/xdPV1aV3333Xud3S0qKDBw8qLS1NEydOVFlZmSorK5WVlaWsrCxVVlZqzJgxmjt3riTJ4/Fo/vz5WrJkidLT05WWlqalS5cqJyfH+VQPAAA4v0UdKK+99pq++93vOrcXL14sSbr77ru1bds2LVu2TN3d3Vq4cKE6OjqUl5envXv3Kjk52XnM2rVrFRcXpzlz5qi7u1vTpk3Ttm3bNGrUqBicEgAAGO6iDpSCggIZY055v8vlUkVFhSoqKk45M3r0aK1fv17r16+P9scDAIDzAN/FAwAArEOgAAAA6xAoAADAOgQKAACwTtRvkgUAjByXLH+6X49/f9WsGB0JEIkrKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsE7cUB8AACA6lyx/+pwf+/6qWTE8EmDgcAUFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh28zBoAB1p9vH5b4BmKcn7iCAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOvwp+4BS/Dn0AHg/xEoANALsQgMPX7FAwAArDOkV1Aef/xx/frXv1ZbW5uuuOIKrVu3Tt/5zneG8pAADAKuUAA4kyELlCeffFJlZWV6/PHHdcMNN+j3v/+9Zs6cqbfeeksTJ04cqsNCP51P//CcT+dqO9YCGHmGLFDWrFmj+fPn66c//akkad26dXruuee0ceNGVVVVDdVhwTL8w2OP/qwF6wAgWkMSKD09PWpsbNTy5csj9hcVFam+vr7PfDgcVjgcdm4Hg0FJUigUGpDjy175XL8e3/yLGTE6kuHnePiLfj2+95rG+vn6s7a913Ukn6sU2/Md6HPl+Ybmuc6357P52Abj+WLhxHMaY848bIbARx99ZCSZl19+OWL/I488Yi699NI+8ytXrjSS2NjY2NjY2EbA1traesZWGNI3ybpcrojbxpg++ySpvLxcixcvdm4fP35cn376qdLT0086/79CoZAyMjLU2tqqlJSU2Bw4zglrYQ/Wwh6shT1Yi4FnjFFnZ6f8fv8ZZ4ckUMaOHatRo0YpEAhE7G9vb5fX6+0z73a75Xa7I/ZddNFFUf3MlJQU/gtnCdbCHqyFPVgLe7AWA8vj8ZzV3JD8HZSEhATl5uaqtrY2Yn9tba3y8/OH4pAAAIBFhuxXPIsXL9Zdd92la6+9VlOmTNGmTZv04Ycf6p577hmqQwIAAJYYskC54447dOTIET388MNqa2tTdna2nnnmGU2aNCmmP8ftdmvlypV9fkWEwcda2IO1sAdrYQ/Wwi4uY87msz4AAACDh+/iAQAA1iFQAACAdQgUAABgHQIFAABYx/pAqaqq0nXXXafk5GSNGzdOt912m95+++2IGWOMKioq5Pf7lZiYqIKCAh06dChiJhwOq7S0VGPHjlVSUpJKSkp0+PDhiJmOjg7ddddd8ng88ng8uuuuu/TZZ58N9CkOG4O5FpdccolcLlfE1vu7m85nsVqLTZs2qaCgQCkpKXK5XCf97zuvi9MbzLXgdXF6sViLTz/9VKWlpbrssss0ZswYTZw4Uffff7/zHXAn8LoYBP39Xp2BNmPGDLN161bT3NxsDh48aGbNmmUmTpxourq6nJlVq1aZ5ORk8+c//9k0NTWZO+64w4wfP96EQiFn5p577jHf+MY3TG1trXn99dfNd7/7XXPllVear776ypm55ZZbTHZ2tqmvrzf19fUmOzvbFBcXD+r52mww12LSpEnm4YcfNm1tbc7W2dk5qOdrs1itxdq1a01VVZWpqqoykkxHR0efn8Xr4vQGcy14XZxeLNaiqanJzJ492+zevdu8++675m9/+5vJysoyt99+e8TP4nUx8KwPlN7a29uNJFNXV2eMMeb48ePG5/OZVatWOTNffvml8Xg85ne/+50xxpjPPvvMxMfHm+rqamfmo48+MhdccIHZs2ePMcaYt956y0gyBw4ccGZeeeUVI8n861//GoxTG3YGai2M+fp/iNeuXTs4JzICnMta/K8XXnjhpP8o8rqI3kCthTG8LqLV37U44U9/+pNJSEgwR48eNcbwuhgs1v+Kp7cTl9nS0tIkSS0tLQoEAioqKnJm3G63pk6dqvr6eklSY2Ojjh49GjHj9/uVnZ3tzLzyyivyeDzKy8tzZq6//np5PB5nBpEGai1OePTRR5Wenq6rrrpKjzzyiHp6egb6lIatc1mLs8HrInoDtRYn8Lo4e7Fai2AwqJSUFMXFff23TXldDI4h/TbjaBljtHjxYt14443Kzs6WJOcLB3t/yaDX69UHH3zgzCQkJCg1NbXPzInHBwIBjRs3rs/PHDduXJ8vNcTAroUkPfDAA7rmmmuUmpqqV199VeXl5WppadEf/vCHgTytYelc1+Js8LqIzkCuhcTrIhqxWosjR47ol7/8pRYsWODs43UxOIZVoCxatEhvvvmm9u/f3+c+l8sVcdsY02dfb71nTjZ/Ns9zPhrotXjwwQed/zx58mSlpqbqBz/4gfP/HvH/Yr0WZ3qOc32e88FArwWvi7MXi7UIhUKaNWuWLr/8cq1cufK0z3G658G5GTa/4iktLdXu3bv1wgsvaMKECc5+n88nSX2qtb293alkn8+nnp4edXR0nHbmk08+6fNz//Of//Sp7fPdQK/FyVx//fWSpHfffTcm5zBS9Gctzgavi7M30GtxMrwuTi4Wa9HZ2albbrlFF154oWpqahQfHx/xPLwuBp71gWKM0aJFi/TUU0/p+eefV2ZmZsT9mZmZ8vl8qq2tdfb19PSorq5O+fn5kqTc3FzFx8dHzLS1tam5udmZmTJlioLBoF599VVn5h//+IeCwaAzc74brLU4mTfeeEOSNH78+Fie0rAVi7U4G7wuzmyw1uJkeF1EitVahEIhFRUVKSEhQbt379bo0aMjnofXxSAZ3PfkRu/ee+81Ho/HvPjiixEfrfviiy+cmVWrVhmPx2Oeeuop09TUZO68886TfrR1woQJZt++feb11183N99880k/Zjx58mTzyiuvmFdeecXk5OTwsbH/MVhrUV9fb9asWWPeeOMN895775knn3zS+P1+U1JSMujnbKtYrUVbW5t54403zObNm40k89JLL5k33njDHDlyxJnhdXF6g7UWvC7OLBZrEQqFTF5ensnJyTHvvvtuxPPw78Xgsj5QJJ1027p1qzNz/Phxs3LlSuPz+Yzb7TY33XSTaWpqinie7u5us2jRIpOWlmYSExNNcXGx+fDDDyNmjhw5YubNm2eSk5NNcnKymTdv3kk/6ne+Gqy1aGxsNHl5ecbj8ZjRo0ebyy67zKxcudJ8/vnng3Wq1ovVWqxcufKMz8Pr4vQGay14XZxZLNbixMe8T7a1tLQ4c7wuBp7LGGNif10GAADg3Fn/HhQAAHD+IVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABY5/8AsqjC2EWostgAAAAASUVORK5CYII=",
323
+ "text/plain": [
324
+ "<Figure size 640x480 with 1 Axes>"
325
+ ]
326
+ },
327
+ "metadata": {},
328
+ "output_type": "display_data"
329
+ },
330
+ {
331
+ "name": "stdout",
332
+ "output_type": "stream",
333
+ "text": [
334
+ "[1950 = 0] [1951 = 0] [1952 = 0] [1953 = 0] [1954 = 0] [1955 = 0] [1956 = 0] [1957 = 0] [1958 = 0] [1959 = 0] [1960 = 0] [1961 = 0] [1962 = 0] [1963 = 0] [1964 = 0] [1965 = 0] [1966 = 0] [1967 = 0] [1968 = 0] [1969 = 0] [1970 = 0] [1971 = 0] [1972 = 0] [1973 = 0] [1974 = 0] [1975 = 0] [1976 = 0] [1977 = 0] [1978 = 0] [1979 = 0] [1980 = 0] [1981 = 0] [1982 = 0] [1983 = 0] [1984 = 0] [1985 = 0] [1986 = 0] [1987 = 0] [1988 = 0] [1989 = 0] [1990 = 0] [1991 = 0] [1992 = 0] [1993 = 0] [1994 = 0] [1995 = 0] [1996 = 0] [1997 = 0] [1998 = 0] [1999 = 0] [2000 = 0] [2001 = 3] [2002 = 0] [2003 = 1] [2004 = 1] [2005 = 6] [2006 = 4] [2007 = 3] [2008 = 5] [2009 = 12] [2010 = 3] [2011 = 4] [2012 = 8] [2013 = 6] [2014 = 10] [2015 = 31] [2016 = 56] [2017 = 82] [2018 = 155] [2019 = 168] [2020 = 297] [2021 = 445] [2022 = 608] [2023 = 521] "
335
+ ]
336
+ }
337
+ ],
338
+ "source": [
339
+ "# df = pd.read_csv(\"index.csv\")\n",
340
+ "# df.head()\n",
341
+ "\n",
342
+ "\n",
343
+ "data = np.array(df)\n",
344
+ "years = data[:, 1]\n",
345
+ "\n",
346
+ "for i in range(len(years)):\n",
347
+ " try:\n",
348
+ " years[i] = int(years[i])\n",
349
+ " except ValueError:\n",
350
+ " continue\n",
351
+ "\n",
352
+ "years = [year for year in years if isinstance(year, int) and 2000 <= year <= 2024 ]\n",
353
+ "counters = Counter(years)\n",
354
+ "unique_years = sorted(list(counters.keys()))\n",
355
+ "print(f\"{unique_years = }\")\n",
356
+ "counts = [counters[year] for year in unique_years]\n",
357
+ "plt.bar(unique_years, counts, label=\"Total\")\n",
358
+ "plt.show()\n",
359
+ "with open(\"counts.csv\", \"w\") as f:\n",
360
+ " for year in range(1950, 2024):\n",
361
+ " count = counters.get(year, 0)\n",
362
+ " print(f\"[{year} = {count}]\", end=\" \")\n",
363
+ " f.write(f\"{year},{count}\\n\")\n"
364
+ ]
365
+ },
366
+ {
367
+ "cell_type": "code",
368
+ "execution_count": null,
369
+ "metadata": {},
370
+ "outputs": [],
371
+ "source": []
372
+ }
373
+ ],
374
+ "metadata": {
375
+ "interpreter": {
376
+ "hash": "607b7d84c7d8e26dbbffb4014e40424fe2faf80a09a85d717e93e42c2773dc40"
377
+ },
378
+ "kernelspec": {
379
+ "display_name": "Python 3.10.4 ('ml')",
380
+ "language": "python",
381
+ "name": "python3"
382
+ },
383
+ "language_info": {
384
+ "codemirror_mode": {
385
+ "name": "ipython",
386
+ "version": 3
387
+ },
388
+ "file_extension": ".py",
389
+ "mimetype": "text/x-python",
390
+ "name": "python",
391
+ "nbconvert_exporter": "python",
392
+ "pygments_lexer": "ipython3",
393
+ "version": "3.11.5"
394
+ },
395
+ "orig_nbformat": 4
396
+ },
397
+ "nbformat": 4,
398
+ "nbformat_minor": 2
399
+ }
counts.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06a4a5ec4a4ac58a3f578ae83ad05450730de0a7700dab86e0ce8c21c60dde9f
3
+ size 535
index.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d0325d722a804c20464d84097b498ece3793fe63081de03ad8b3c6b88b765dd
3
+ size 128154723
index.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+
4
+ """
5
+ Simple script to generate metadata about corpus.
6
+ """
7
+
8
+ __author__ = "Amittai Siavava"
9
+ __version__ = "0.0.1"
10
+
11
+ from os import mkdir
12
+ from collections import Counter
13
+ import csv
14
+ import pandas as pd
15
+
16
+ def count_words():
17
+ """
18
+ This is a simple script to count the number of words in this directory.
19
+
20
+ It loops over all the lines in `.all` and counts the occurrence of each word,
21
+ then sums them up.
22
+
23
+ HACK:
24
+ This is a hacky way to count the number of words in the corpus.
25
+ >>> count_words()
26
+ """
27
+ total = 0
28
+ with open("all", "r") as f:
29
+ for line in f:
30
+ try:
31
+ total += int(line.strip().split()[0])
32
+ except:
33
+ pass
34
+ f.close()
35
+ if total > 0:
36
+ with open (".total", "w") as f:
37
+ print(f"Total words = {total}")
38
+ f.write(f"Total words = {total}")
39
+ f.close()
40
+
41
+ def index_pages():
42
+ """
43
+ Generate a friendly index of the pages.
44
+
45
+ We create a csv and a tsv (in case one proves more convenient than the other).
46
+ """
47
+ docID = 0
48
+
49
+ with open("index.csv", "w") as csv_file, open("urls", "w") as urls:
50
+ writer = csv.writer(csv_file)
51
+ # csv.write("id,year,title,url\n")
52
+ writer.writerow(["id", "year", "title", "url", "text"])
53
+ while True:
54
+ try:
55
+ with open(f"../log/{docID}", "r") as meta, open(f"../log/{docID}.txt", "r") as data:
56
+ title = meta.readline().strip()
57
+ year = meta.readline().strip()
58
+ url = meta.readline().strip()
59
+ # read remaining text
60
+ text = data.read()
61
+ # print(f"{text = }")
62
+
63
+
64
+
65
+ meta.close()
66
+ data.close()
67
+
68
+ print(f"Indexing: {docID}")
69
+ # csv.write(f'{docID},{year},"{title}","{url}","{text}"\n')
70
+
71
+ writer.writerow([docID, year, f'"{title}"', f'"{url}"', f'"{text}"'])
72
+ # tsv.write(f"{docID}\t{year}\t{title}\t{url}\n")
73
+ urls.write(f"{url}\n")
74
+ docID += 1
75
+ except:
76
+ break
77
+ print("Done.")
78
+
79
+ def categorize():
80
+ """
81
+ Categorize the pages by year.
82
+ """
83
+
84
+ docID = 0
85
+ years = Counter()
86
+ while True:
87
+ try:
88
+ with open(f"../log/{docID}.txt", "r") as doc, open(f"../log/{docID}", "r") as meta:
89
+ title = meta.readline().strip()
90
+ year = meta.readline().strip()
91
+ url = meta.readline().strip()
92
+ text = doc.read()
93
+ doc.close()
94
+ meta.close()
95
+
96
+ if year == "":
97
+ year = "unknown"
98
+
99
+ try:
100
+ mkdir(f"../categorized/{year}")
101
+ except:
102
+ pass
103
+
104
+ id = years.get(year, 0)
105
+ with open(f"../categorized/{year}/{id}.txt", "w") as f:
106
+ f.write(f"old id = {docID}\n{title}\n{year}\n{url}\n\n{text}")
107
+ f.close()
108
+ years[year] = id + 1
109
+ docID += 1
110
+
111
+ except:
112
+ break
113
+
114
+ # def load_data():
115
+ # df = pd.read_csv("index.csv")
116
+ # df.head(5)
117
+
118
+
119
+ if __name__ == "__main__":
120
+ # count_words()
121
+ index_pages()
122
+ categorize()
123
+ # load_data()
urls ADDED
The diff for this file is too large to render. See raw diff