Datasets:
File size: 9,255 Bytes
c1a8138 d29d012 c1a8138 8b8c3fd c9806b0 b4423d0 9ea9ce0 d29d012 2727dab c1a8138 8b8c3fd c9806b0 b4423d0 9ea9ce0 d29d012 2727dab a553912 c1a8138 a553912 7ed2e8a a553912 a66fa30 7acda1f a553912 7acda1f a553912 a66fa30 a553912 7acda1f a553912 7acda1f a553912 a66fa30 a553912 7acda1f a553912 a66fa30 a553912 7acda1f a553912 a66fa30 a553912 7acda1f a553912 7acda1f a553912 8359e1d 47adf7d 8359e1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
---
dataset_info:
- config_name: ancestry_prediction
features:
- name: sequence
dtype: string
- name: id
dtype: string
- name: start_idx
dtype: int64
- name: chromosome
dtype: string
- name: variants
dtype: string
- name: parents
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 914858176
num_examples: 14085
download_size: 298355655
dataset_size: 914858176
- config_name: coding_pathogenicity
features:
- name: alt_left
dtype: string
- name: alt_right
dtype: string
- name: ref_left
dtype: string
- name: ref_right
dtype: string
- name: label
dtype: float64
- name: chrom
dtype: string
splits:
- name: train
num_bytes: 353452168
num_examples: 82872
download_size: 128733817
dataset_size: 353452168
- config_name: common_vs_rare
features:
- name: ref_forward_sequence
dtype: string
- name: alt_forward_sequence
dtype: string
- name: label
dtype: int8
- name: chromosome
dtype: string
- name: position
dtype: int32
- name: alt_left
dtype: string
- name: alt_right
dtype: string
- name: ref_left
dtype: string
- name: ref_right
dtype: string
- name: chrom
dtype: string
splits:
- name: train
num_bytes: 1239819384
num_examples: 200000
download_size: 542989051
dataset_size: 1239819384
- config_name: expression
features:
- name: alt_left
dtype: string
- name: alt_right
dtype: string
- name: ref_left
dtype: string
- name: ref_right
dtype: string
- name: label
dtype: int64
- name: chrom
dtype: string
- name: deepsea_label
dtype: string
splits:
- name: train
num_bytes: 650249506
num_examples: 156162
download_size: 270672126
dataset_size: 650249506
- config_name: meqtl
features:
- name: label
dtype: int8
- name: chromosome
dtype: string
- name: position
dtype: int32
- name: uid
dtype: string
- name: alt_left
dtype: string
- name: alt_right
dtype: string
- name: ref_left
dtype: string
- name: ref_right
dtype: string
- name: chrom
dtype: string
splits:
- name: train
num_bytes: 318695785
num_examples: 76488
download_size: 134361097
dataset_size: 318695785
- config_name: non_coding_pathogenicity
features:
- name: alt_left
dtype: string
- name: alt_right
dtype: string
- name: ref_left
dtype: string
- name: ref_right
dtype: string
- name: label
dtype: int64
- name: chrom
dtype: string
- name: vep
dtype: string
splits:
- name: train
num_bytes: 1265476277
num_examples: 295495
download_size: 442285117
dataset_size: 1265476277
- config_name: sqtl
features:
- name: geneId
dtype: string
- name: snpId
dtype: string
- name: pv
dtype: float64
- name: label
dtype: int64
- name: tissue
dtype: string
- name: __index_level_0__
dtype: int64
- name: chrom
dtype: string
- name: pos
dtype: int64
- name: ref_allele
dtype: string
- name: alt_allele
dtype: string
- name: alt_left
dtype: string
- name: alt_right
dtype: string
- name: ref_left
dtype: string
- name: ref_right
dtype: string
splits:
- name: train
num_bytes: 4501372944
num_examples: 1055241
download_size: 1855898562
dataset_size: 4501372944
configs:
- config_name: ancestry_prediction
data_files:
- split: train
path: ancestry_prediction/train-*
- config_name: coding_pathogenicity
data_files:
- split: train
path: coding_pathogenicity/train-*
- config_name: common_vs_rare
data_files:
- split: train
path: common_vs_rare/train-*
- config_name: expression
data_files:
- split: train
path: expression/train-*
- config_name: meqtl
data_files:
- split: train
path: meqtl/train-*
- config_name: non_coding_pathogenicity
data_files:
- split: train
path: non_coding_pathogenicity/train-*
- config_name: sqtl
data_files:
- split: train
path: sqtl/train-*
tags:
- gfm
- genomics
- dna
- genomic foundation model
- m42
- BioFM
- BioToken
- Variant
license: cc-by-nc-4.0
task_categories:
- text-classification
pretty_name: variant-benchmark
size_categories:
- 1M<n<10M
---
# Variant Benchmark
This benchmark is designed to evaluate how effectively models leverage variant information across diverse biological contexts.
Unlike conventional genomic benchmarks that focus primarily on region classification, our approach extends to a broader range of variant-driven molecular processes.
Existing assessments, such as [BEND]((https://github.com/frederikkemarin/BEND)) and the [Genomic Long-Range Benchmark (GLRB)](https://huggingface.co/datasets/InstaDeepAI/genomics-long-range-benchmark),
provide valuable insights into specific tasks like noncoding pathogenicity and tissue-specific expression.
However, they do not fully capture the complexity of variant-mediated effects across multiple biological mechanisms.
This benchmark addresses that gap by incorporating a more comprehensive set of evaluations, enabling a deeper assessment of functional genomics models.
## Quick Start
```python
from datasets import load_dataset
DATASET_SUBSET = "ancestry_prediction"
# Dataset subset should be from one of the available tasks:
# ['ancestry_prediction', 'non_coding_pathogenicity', 'expression',
# 'common_vs_rare', 'coding_pathogenicity', 'meqtl', 'sqtl']
ds = load_dataset(
"m42-health/variant-benchmark",
DATASET_SUBSET,
)
print(ds)
# Example output:
# (Each dataset has a default 'train' split, but we recommend using k-fold cross-validation for better evaluation)
# DatasetDict({
# train: Dataset({
# features: ['sequence', 'id', 'start_idx', 'chromosome', 'variants', 'parents', 'label'],
# num_rows: 14085
# })
# })
```
## Benchmark Tasks
- **Coding pathogenicity assessment:** `subset: coding_pathogenicity`<br/>
Accurate prediction of pathogenic coding variants is fundamental to precision medicine and clinical genomics.
For this task, we use the [AlphaMissense](https://github.com/google-deepmind/alphamissense) dataset, which provides a comprehensive catalog of coding variants annotated for pathogenicity.
- **Noncoding pathogenicity assessment:** `subset: non_coding_pathogenicity`<br/>
Pathogenic variants in noncoding regions significantly impact gene regulation, influencing many complex traits and diseases.
We assess this using the [BEND dataset](https://github.com/frederikkemarin/BEND), which contains 295,000 annotated single-nucleotide variants (SNVs) in noncoding genomic regions.
- **Expression effect prediction:** `subset: expression`<br/>
Variant-driven changes in gene expression contribute to phenotypic diversity and disease processes.
To quantify these effects, we use gene expression data from [DeepSea](https://www.nature.com/articles/nmeth.3547), which provides variant-associated regulatory annotations.
- **Alternative splicing:** `subset: sqtl`<br/>
Variant-induced alternative splicing contributes significantly to human proteomic diversity and affects biological processes and diseases.
We evaluate splicing-related variant effects using an [sQTL dataset](https://www.nature.com/articles/s41467-020-20578-2) derived from sqtlSeeker2, containing over one million variant-tissue pairs.
- **DNA methylation:** `subset: meqtl`<br/>
Genomic variants can influence DNA methylation patterns, affecting gene regulation and disease susceptibility.
For this task, we utilize meQTL data from the [GRASP database](https://pubmed.ncbi.nlm.nih.gov/24931982/), which links genetic variants to methylation changes.
- **Ancestry classification:** `subset: ancestry_prediction`<br/>
Genomic variation encodes population structure, informing studies in evolutionary biology and disease susceptibility.
To evaluate this capability, we used genomic segments labeled by five major superpopulations from the 1000 Genomes Project.
- **Common vs synthetic variants:** `subset: common_vs_rare`<br/>
This task evaluates the model’s ability to recognize biologically conserved genomic contexts characteristic of authentic common variants.
To create this deataset, we randomly sampled 100K common variants (MAF > 0.05) from GnomAD~\citep{chen2024gnomad} and paired each with a synthetic control variant generated by randomly substituting a nucleotide within a ±20-nucleotide local context window.
## Citation
```
@article {Medvedev2025.03.27.645711,
author = {Medvedev, Aleksandr and Viswanathan, Karthik and Kanithi, Praveenkumar and Vishniakov, Kirill and Munjal, Prateek and Christophe, Clement and Pimentel, Marco AF and Rajan, Ronnie and Khan, Shadab},
title = {BioToken and BioFM - Biologically-Informed Tokenization Enables Accurate and Efficient Genomic Foundation Models},
elocation-id = {2025.03.27.645711},
year = {2025},
doi = {10.1101/2025.03.27.645711},
publisher = {Cold Spring Harbor Laboratory},
URL = {https://www.biorxiv.org/content/early/2025/04/01/2025.03.27.645711},
eprint = {https://www.biorxiv.org/content/early/2025/04/01/2025.03.27.645711.full.pdf},
journal = {bioRxiv}
}
``` |