---
language:
- vi
- en
- de
- fr
- zh
license: mit
task_categories:
- automatic-speech-recognition
viewer: true
dataset_info:
- config_name: Chinese
features:
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: text
dtype: string
- name: duration
dtype: float64
splits:
- name: train
num_bytes: 182566135.142
num_examples: 1242
- name: eval
num_bytes: 12333509
num_examples: 91
- name: test
num_bytes: 33014034
num_examples: 225
download_size: 227567289
dataset_size: 227913678.142
- config_name: English
features:
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: text
dtype: string
- name: duration
dtype: float64
splits:
- name: train
num_bytes: 2789314997.152
num_examples: 25512
- name: eval
num_bytes: 299242087.632
num_examples: 2816
- name: test
num_bytes: 553873172.749
num_examples: 4751
download_size: 3627859275
dataset_size: 3642430257.533
- config_name: French
features:
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: text
dtype: string
- name: duration
dtype: float64
splits:
- name: train
num_bytes: 168642145.231
num_examples: 1403
- name: eval
num_bytes: 5164908
num_examples: 42
- name: test
num_bytes: 42780388
num_examples: 344
download_size: 216118671
dataset_size: 216587441.231
- config_name: German
features:
- name: audio
dtype: audio
- name: text
dtype: string
- name: duration
dtype: float64
splits:
- name: train
num_bytes: 181312217.029
num_examples: 1443
- name: test
num_bytes: 137762006.256
num_examples: 1091
- name: eval
num_bytes: 35475098
num_examples: 287
download_size: 354494147
dataset_size: 354549321.285
- config_name: Vietnamese
features:
- name: audio
dtype: audio
- name: text
dtype: string
- name: duration
dtype: float64
splits:
- name: train
num_bytes: 56584901.453
num_examples: 2773
- name: test
num_bytes: 69598082.31
num_examples: 3437
- name: dev
num_bytes: 57617298.896
num_examples: 2912
download_size: 181789393
dataset_size: 183800282.659
configs:
- config_name: Chinese
data_files:
- split: train
path: Chinese/train-*
- split: eval
path: Chinese/eval-*
- split: test
path: Chinese/test-*
- config_name: English
data_files:
- split: train
path: English/train-*
- split: eval
path: English/eval-*
- split: test
path: English/test-*
- config_name: French
data_files:
- split: train
path: French/train-*
- split: eval
path: French/eval-*
- split: test
path: French/test-*
- config_name: German
data_files:
- split: train
path: German/train-*
- split: test
path: German/test-*
- split: eval
path: German/eval-*
- config_name: Vietnamese
data_files:
- split: train
path: Vietnamese/train-*
- split: test
path: Vietnamese/test-*
- split: dev
path: Vietnamese/dev-*
tags:
- medical
---
# MultiMed: Multilingual Medical Speech Recognition via Attention Encoder Decoder
**
ACL 2025
**
Khai Le-Duc, Phuc Phan, Tan-Hanh Pham, Bach Phan Tat,
Minh-Huong Ngo, Chris Ngo, Thanh Nguyen-Tang, Truong-Son Hy
> Please press ⭐ button and/or cite papers if you feel helpful.
* **Abstract:**
Multilingual automatic speech recognition (ASR) in the medical domain serves as a foundational task for various downstream applications such as speech translation, spoken language understanding, and voice-activated assistants. This technology improves patient care by enabling efficient communication across language barriers, alleviating specialized workforce shortages, and facilitating improved diagnosis and treatment, particularly during pandemics. In this work, we introduce MultiMed, the first multilingual medical ASR dataset, along with the first collection of small-to-large end-to-end medical ASR models, spanning five languages: Vietnamese, English, German, French, and Mandarin Chinese. To our best knowledge, MultiMed stands as **the world’s largest medical ASR dataset across all major benchmarks**: total duration, number of recording conditions, number of accents, and number of speaking roles. Furthermore, we present the first multilinguality study for medical ASR, which includes reproducible empirical baselines, a monolinguality-multilinguality analysis, Attention Encoder Decoder (AED) vs Hybrid comparative study and a linguistic analysis. We present practical ASR end-to-end training schemes optimized for a fixed number of trainable parameters that are common in industry settings. All code, data, and models are available online: [https://github.com/leduckhai/MultiMed/tree/master/MultiMed](https://github.com/leduckhai/MultiMed/tree/master/MultiMed).
* **Citation:**
Please cite this paper: [https://arxiv.org/abs/2409.14074](https://arxiv.org/abs/2409.14074)
``` bibtex
@article{le2024multimed,
title={MultiMed: Multilingual Medical Speech Recognition via Attention Encoder Decoder},
author={Le-Duc, Khai and Phan, Phuc and Pham, Tan-Hanh and Tat, Bach Phan and Ngo, Minh-Huong and Ngo, Chris and Nguyen-Tang, Thanh and Hy, Truong-Son},
journal={arXiv preprint arXiv:2409.14074},
year={2024}
}
```
## Dataset and Pre-trained Models:
Dataset: [🤗 HuggingFace dataset](https://huggingface.co/datasets/leduckhai/MultiMed), [Paperswithcodes dataset](https://paperswithcode.com/dataset/multimed)
Pre-trained models: [🤗 HuggingFace models](https://huggingface.co/leduckhai/MultiMed)
| Model Name | Description | Link |
|------------------|--------------------------------------------|----------------------------------------------------------------------|
| `Whisper-Small-Chinese` | Small model fine-tuned on medical Chinese set | [Hugging Face models](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/asr/whisper-small-chinese) |
| `Whisper-Small-English` | Small model fine-tuned on medical English set | [Hugging Face models](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/asr/whisper-small-english) |
| `Whisper-Small-French` | Small model fine-tuned on medical French set | [Hugging Face models](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/asr/whisper-small-french) |
| `Whisper-Small-German` | Small model fine-tuned on medical German set | [Hugging Face models](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/asr/whisper-small-german) |
| `Whisper-Small-Vietnamese` | Small model fine-tuned on medical Vietnamese set | [Hugging Face models](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/asr/whisper-small-vietnamese) |
| `Whisper-Small-Multilingual` | Small model fine-tuned on medical Multilingual set (5 languages) | [Hugging Face models](https://huggingface.co/leduckhai/MultiMed-ST/tree/main/asr/whisper-small-multilingual) |
## Contact:
If any links are broken, please contact me for fixing!
Thanks [Phan Phuc](https://www.linkedin.com/in/pphuc/) for dataset viewer <3
```
Le Duc Khai
University of Toronto, Canada
Email: duckhai.le@mail.utoronto.ca
GitHub: https://github.com/leduckhai
```