blumh nielsr HF Staff commited on
Commit
a593517
·
verified ·
1 Parent(s): 90ccaee

Add image-segmentation task category and Github link (#3)

Browse files

- Add image-segmentation task category and Github link (9a8e68df71dbdb192a9c892ae11f2c99f8e1c247)


Co-authored-by: Niels Rogge <nielsr@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -1,21 +1,21 @@
1
  ---
2
- viewer: false
3
- license: bsd
4
  language:
5
  - en
 
 
 
 
 
6
  tags:
7
  - 3D semantic segmentation
8
  - indoor 3D scene dataset
9
- pretty_name: arkit_labelmaker
10
- size_categories:
11
- - 1K<n<10K
12
  ---
13
 
14
  # ARKit Labelmaker: A New Scale for Indoor 3D Scene Understanding
15
 
16
- [[arxiv]](https://arxiv.org/abs/2410.13924) [[website]](https://labelmaker.org/) [[checkpoints]](https://huggingface.co/labelmaker/PTv3-ARKit-LabelMaker)
17
 
18
  We complement ARKitScenes dataset with dense semantic annotations that are automatically generated at scale. This produces the first large-scale, real-world 3D dataset with dense semantic annotations.
19
- Training on this auto-generated data, we push forward the state-of-the-art performance on ScanNet and ScanNet200 with prevalent 3D semantic segmentation models.
20
-
21
-
 
1
  ---
 
 
2
  language:
3
  - en
4
+ license: bsd
5
+ size_categories:
6
+ - 1K<n<10K
7
+ pretty_name: arkit_labelmaker
8
+ viewer: false
9
  tags:
10
  - 3D semantic segmentation
11
  - indoor 3D scene dataset
12
+ task_categories:
13
+ - image-segmentation
 
14
  ---
15
 
16
  # ARKit Labelmaker: A New Scale for Indoor 3D Scene Understanding
17
 
18
+ [[arxiv]](https://arxiv.org/abs/2410.13924) [[website]](https://labelmaker.org/) [[checkpoints]](https://huggingface.co/labelmaker/PTv3-ARKit-LabelMaker) [[code]](https://github.com/cvg/LabelMaker)
19
 
20
  We complement ARKitScenes dataset with dense semantic annotations that are automatically generated at scale. This produces the first large-scale, real-world 3D dataset with dense semantic annotations.
21
+ Training on this auto-generated data, we push forward the state-of-the-art performance on ScanNet and ScanNet200 with prevalent 3D semantic segmentation models.