kartikagg98 commited on
Commit
549673b
·
verified ·
1 Parent(s): 2656f94

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -1
README.md CHANGED
@@ -160,4 +160,73 @@ tags:
160
  pretty_name: Hindi-English Codemix Datasets
161
  size_categories:
162
  - 1M<n<10M
163
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
160
  pretty_name: Hindi-English Codemix Datasets
161
  size_categories:
162
  - 1M<n<10M
163
+ ---
164
+ # Dataset Card for HINMIX hi-en
165
+
166
+ <!-- Provide a quick summary of the dataset. -->
167
+ **HINMIX is a massive parallel codemixed dataset for Hindi-English code switching.**
168
+
169
+ See the [📚 paper on arxiv](https://arxiv.org/abs/2403.16771) to dive deep into this synthetic codemix data generation pipeline.
170
+ Dataset contains 4.2M parallel sentences in 6 Hindi-English forms.
171
+
172
+ Further, we release gold standard codemix dev and test set manually translated by proficient bilingual annotators.
173
+ - Dev Set consists of 280 examples
174
+ - Test set consists of 2507 examples
175
+
176
+ ## Dataset Details
177
+
178
+ ### Dataset Description
179
+
180
+ We construct a synthetic Hinglish-English dataset by leveraging a bilingual Hindi-English corpus.
181
+
182
+ - **Curated by:** LCS2 IIITD (https://www.lcs2.in/)
183
+ - **Language(s) (NLP):** Hindi Romanized, Hindi Devanagiri, Hindi Codemix, English
184
+
185
+ ### Dataset Sources [optional]
186
+
187
+ - **Repository:** https://github.com/Kartikaggarwal98/Robust_Codemix_MT
188
+ - **Paper:** https://arxiv.org/abs/2403.16771
189
+
190
+ ## Uses
191
+
192
+ Dataset can be used individually to train machine translation models for codemix hindi translation in any direction.
193
+ Dataset can be appended with other languages from similar language family to transfer codemixing capabilities in a zero shot manner.
194
+ Zero-shot translation on bangla-english showed great performance without even developing bangla codemix corpus.
195
+ An indic-multilingual model with this data as a subset can improve codemixing by a significant margin.
196
+
197
+ ### Source Data
198
+
199
+ [IITB Parallel corpus](https://www.cfilt.iitb.ac.in/iitb_parallel/) is chosen as the base dataset to translate into codemix forms.
200
+ The corpus contains widely diverse content from news articles, judicial domain, indian government websites, wikipedia, book translations, etc.
201
+
202
+ #### Data Collection and Processing
203
+
204
+ 1. Given a source- target sentence pair S || T , we generate the synthetic code-mixed data by substituting words in the matrix language sentence with the corresponding words from the embedded language sentence.
205
+ Here, hindi is the matrix language which forms the syntactic and morphological structure of CM sentence. English becomes the embedded language from which we borrow words.
206
+ 1. Create inclusion list of nouns, adjectives and quantifiers which are candidates for substitution.
207
+ 1. POS-tag the corpus using any tagger. We used [LTRC](http://ltrc.iiit.ac.in/analyzer/) for hindi tagging.
208
+ 1. Use fast-align for learning alignment model b/w parallel corpora (Hi-En). Once words are aligned, next task is switch words from english sentences to hindi sentence based on inclusion list.
209
+ 1. Use heuristics to replace n-gram words and create multiple codemix mappings of the same hindi sentence.
210
+ 1. Filter sentences using deterministic and perplexity metrics from a multilingual model like XLM.
211
+
212
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61565c721b6f2789680793eb/KhhuM9Ze2-UrllHh6vRGL.png)
213
+
214
+
215
+ ### Recommendations
216
+
217
+ Sringent filtering by deduplication of similar sentences and removing the ungrammatical sentences can be useful for training high quality models.
218
+
219
+ ## Citation Information
220
+
221
+ @misc{kartik2024synthetic,
222
+ title={Synthetic Data Generation and Joint Learning for Robust Code-Mixed Translation},
223
+ author={Kartik and Sanjana Soni and Anoop Kunchukuttan and Tanmoy Chakraborty and Md Shad Akhtar},
224
+ year={2024},
225
+ eprint={2403.16771},
226
+ archivePrefix={arXiv},
227
+ primaryClass={cs.CL}
228
+ }
229
+
230
+ ## Dataset Card Contact
231
+
232
+ kartik@ucsc.edu