import pandas as pd from pathlib import Path import pyarrow # ensures pyarrow is installed for Parquet support def find_and_group_csvs(): base = Path(".") groups = { "evaluation_results": sorted(base.rglob("evaluation_results.csv")), "bootstrap_confidence_intervals": sorted(base.rglob("bootstrap_confidence_intervals.csv")), } for name, paths in groups.items(): print(f"[INFO] Found {len(paths)} files for '{name}'") if not paths: print(f"[WARNING] No files found for '{name}'") return groups def combine(paths, out_path): if not paths: print(f"[SKIP] No files to combine for {out_path}") return print(f"[INFO] Combining {len(paths)} files into {out_path}") dfs = [pd.read_csv(p) for p in paths] # Basic schema validation cols = {tuple(df.columns) for df in dfs} if len(cols) > 1: raise ValueError(f"[ERROR] {out_path}: header mismatch across shards") combined = pd.concat(dfs, ignore_index=True) combined.to_parquet(out_path, engine="pyarrow", index=False) print(f"[SUCCESS] Written {out_path} with {len(combined)} rows") if __name__ == "__main__": groups = find_and_group_csvs() combine(groups["evaluation_results"], "evaluation_results-00000-of-00001.parquet") combine(groups["bootstrap_confidence_intervals"], "boostrap_confidence_intervals-00000-of-00001.parquet")