{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "2e1f00d3-5184-41ad-b263-2731bd6907f0", "metadata": { "tags": [] }, "outputs": [], "source": [ "import pandas as pd\n", "from Utils import calcular_resultados" ] }, { "cell_type": "code", "execution_count": 2, "id": "d681e1a6-c967-4249-a70d-c6e412175824", "metadata": { "tags": [] }, "outputs": [], "source": [ "dataset = pd.read_csv('dataset//Teste_JBCS25.csv')" ] }, { "cell_type": "code", "execution_count": 5, "id": "d7b27a05-0583-4911-9174-ddfe0583446d", "metadata": { "tags": [] }, "outputs": [], "source": [ "def selecionar_index(dataset):\n", " index_a = []\n", " index_b = []\n", " for index, row in dataset.iterrows():\n", " if row['reference'] == 'grader_a':\n", " index_a.append(index)\n", " elif row['reference'] == 'grader_b':\n", " index_b.append(index)\n", " else:\n", " print(\"Erro\")\n", " assert len(index_a) == len(index_b)\n", " return index_a, index_b\n", "index_a, index_b = selecionar_index(dataset)" ] }, { "cell_type": "code", "execution_count": 7, "id": "5729f104-bce9-454e-b348-d6590c52fc44", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0, 1, 5, 7, 8, 11, 12, 14, 15, 17, 19, 21, 23, 25, 26, 27, 29, 33, 38, 39, 43, 44, 45, 46, 48, 49, 52, 53, 56, 57, 58, 59, 61, 62, 65, 67, 69, 70, 73, 75, 79, 82, 86, 91, 92, 94, 96, 98, 99, 100, 101, 102, 103, 105, 108, 113, 114, 117, 118, 119, 122, 123, 125, 126, 128, 133, 135, 136, 137]\n", "[2, 3, 4, 6, 9, 10, 13, 16, 18, 20, 22, 24, 28, 30, 31, 32, 34, 35, 36, 37, 40, 41, 42, 47, 50, 51, 54, 55, 60, 63, 64, 66, 68, 71, 72, 74, 76, 77, 78, 80, 81, 83, 84, 85, 87, 88, 89, 90, 93, 95, 97, 104, 106, 107, 109, 110, 111, 112, 115, 116, 120, 121, 124, 127, 129, 130, 131, 132, 134]\n" ] } ], "source": [ "print(index_a)\n", "print(index_b)" ] }, { "cell_type": "code", "execution_count": null, "id": "4df02146-061a-4594-8470-b582385aedbf", "metadata": { "tags": [] }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "a3fcc7d5-29ff-4c8f-8542-c58c114a233e", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 11, "id": "e100fb4a-2b3e-47a1-a01c-14e05a8e8ef8", "metadata": { "tags": [] }, "outputs": [], "source": [ "def quebrar_respostas(y, y_hat, index_a, index_b):\n", " y_hat_a = []\n", " y_hat_b = []\n", " y_a, y_b = [], []\n", " #print(y)\n", " for idx in range(len(y)):\n", " if idx in index_a:\n", " y_a.append( y[idx] )\n", " y_hat_a.append( y_hat[idx] )\n", " elif idx in index_b:\n", " y_b.append( y[idx] )\n", " y_hat_b.append( y_hat[idx] )\n", " elif (idx in index_a) and (idx in index_b):\n", " print(\"Erro\")\n", " return y_a, y_b, y_hat_a, y_hat_b\n", "\n", "def formatar_respostas(dic_a, dic_b, dic_geral):\n", " F1_m_a = sum(dic_a['F1-Macro'])/len(dic_a['F1-Macro'])\n", " F1_w_a = sum(dic_a['F1-Weighted'])/len(dic_a['F1-Weighted'])\n", " QWK_a = sum(dic_a['QWK'])/len(dic_a['QWK'])\n", " print(f\"A: {F1_m_a:.2f} & {F1_w_a:.2f} & {QWK_a:.2f} &\")\n", " F1_m_b = sum(dic_b['F1-Macro'])/len(dic_b['F1-Macro'])\n", " F1_w_b = sum(dic_b['F1-Weighted'])/len(dic_b['F1-Weighted'])\n", " QWK_b = sum(dic_b['QWK'])/len(dic_b['QWK'])\n", " print(f\"B: {F1_m_b:.2f} & {F1_w_b:.2f} & {QWK_b:.2f} &\")\n", " F1_m_geral = sum(dic_geral['F1-Macro'])/len(dic_geral['F1-Macro'])\n", " F1_w_geral = sum(dic_geral['F1-Weighted'])/len(dic_geral['F1-Weighted'])\n", " QWK_geral = sum(dic_geral['QWK'])/len(dic_geral['QWK'])\n", " print(f\"geral: {F1_m_geral:.2f} & {F1_w_geral:.2f} & {QWK_geral:.2f} &\")\n", " F1_m_media = (F1_m_a + F1_m_b) / 2\n", " F1_w_media = (F1_w_a + F1_w_b) / 2 \n", " QWK_media = (QWK_a + QWK_b) / 2\n", " print(f\"media: {F1_m_media:.2f} & {F1_w_media:.2f} & {QWK_media:.2f} &\")\n", "\n", "def adicionar_performances(dic_a, dic_b, dic_geral, perf_a, perf_b, perf_geral):\n", " for key in perf_a:\n", " perf_a[key].append(dic_a[key])\n", " perf_b[key].append(dic_b[key])\n", " perf_geral[key].append(dic_geral[key])\n", " \n", "def calcular_media(dataset, index_a, index_b):\n", " perf_a = {'QWK': [], 'F1-Macro': [], 'F1-Weighted': []}\n", " perf_b = {'QWK': [], 'F1-Macro': [], 'F1-Weighted': []}\n", " perf_geral = {'QWK': [], 'F1-Macro': [], 'F1-Weighted': []}\n", " for idx, row in dataset.iterrows():\n", " y = eval(row['y'])\n", " y_hat = eval(row['y_hat'])\n", " y_a, y_b, y_hat_a, y_hat_b = quebrar_respostas(y, y_hat, index_a, index_b)\n", " dic_a = calcular_resultados(y_a, y_hat_a)\n", " dic_b = calcular_resultados(y_b, y_hat_b)\n", " dic_geral = calcular_resultados(y_a + y_b, y_hat_a + y_hat_b)\n", " adicionar_performances(dic_a, dic_b, dic_geral, perf_a, perf_b, perf_geral)\n", " formatar_respostas(perf_a, perf_b, perf_geral)" ] }, { "cell_type": "code", "execution_count": 13, "id": "712a4429-a014-4991-88a1-e69d4cc0441c", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "'\\nfor comp in range(1, 6):\\n print(f\"Comp {comp}\")\\n respostas = pd.read_csv(f\\'RF-{comp}.csv\\')\\n calcular_media(respostas, index_a, index_b)\\n'" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\"\"\"\n", "for comp in range(1, 6):\n", " print(f\"Comp {comp}\")\n", " respostas = pd.read_csv(f'RF-{comp}.csv')\n", " calcular_media(respostas, index_a, index_b)\n", "\"\"\"" ] }, { "cell_type": "code", "execution_count": 27, "id": "249c4d4b-8e29-43f6-a700-ba20c2b79c07", "metadata": {}, "outputs": [], "source": [ "def calcular_media(dataset, index_a, index_b, nome):\n", " global Y_HAT, NORMALIZACAO\n", " perf_a = {'QWK': [], 'F1-Macro': [], 'F1-Weighted': []}\n", " perf_b = {'QWK': [], 'F1-Macro': [], 'F1-Weighted': []}\n", " perf_geral = {'QWK': [], 'F1-Macro': [], 'F1-Weighted': []}\n", " y = (dataset['label']*NORMALIZACAO).tolist()\n", " y_hat = (dataset[Y_HAT]*NORMALIZACAO).tolist()\n", " y_a, y_b, y_hat_a, y_hat_b = quebrar_respostas(y, y_hat, index_a, index_b)\n", " dic_a = calcular_resultados(y_a, y_hat_a)\n", " dic_b = calcular_resultados(y_b, y_hat_b)\n", " dic_geral = calcular_resultados(y_a + y_b, y_hat_a + y_hat_b)\n", " adicionar_performances(dic_a, dic_b, dic_geral, perf_a, perf_b, perf_geral)\n", " formatar_respostas(perf_a, perf_b, perf_geral, nome)\n", "\n", "\n", "\n", "def printar_dic(dic, nome):\n", " global dic_print_global\n", " F1_m = sum(dic['F1-Macro'])/len(dic['F1-Macro'])\n", " F1_w = sum(dic['F1-Weighted'])/len(dic['F1-Weighted'])\n", " QWK = sum(dic['QWK'])/len(dic['QWK'])\n", " print_A = f\"{F1_m:.2f} & {F1_w:.2f} & {QWK:.2f} &\"\n", " print(f\"{nome}: {print_A}\")\n", " dic_print_global[nome] += print_A\n", "\n", "def fazer_media(dic1, dic2):\n", " F1_macro = (dic1['F1-Macro'][0]+dic2['F1-Macro'][0])/2\n", " F1_weighted = (dic1['F1-Weighted'][0]+dic2['F1-Weighted'][0])/2\n", " #print(dic1['QWK'], dic2['QWK'])\n", " QWK = (dic1['QWK'][0]+dic2['QWK'][0])/2\n", " return {'F1-Macro': [F1_macro], 'F1-Weighted': [F1_weighted], 'QWK': [QWK]}\n", "\n", "def formatar_respostas(dic_a, dic_b, dic_geral, nome):\n", " global dic_print_global\n", " printar_dic(dic_a, f\"{nome}-A\")\n", " printar_dic(dic_b, f\"{nome}-B\")\n", " printar_dic(dic_geral, f\"{nome}-geral\")\n", " printar_dic(fazer_media(dic_a, dic_b), f\"{nome}-media\")\n", " \"\"\"\n", " print(f\"A: {print_A})\n", " dic_print_global[f\"{nome}-A\"\n", " F1_m_b = sum(dic_b['F1-Macro'])/len(dic_b['F1-Macro'])\n", " F1_w_b = sum(dic_b['F1-Weighted'])/len(dic_b['F1-Weighted'])\n", " QWK_b = sum(dic_b['QWK'])/len(dic_b['QWK'])\n", " print(f\"B: {F1_m_b:.2f} & {F1_w_b:.2f} & {QWK_b:.2f} &\")\n", " F1_m_geral = sum(dic_geral['F1-Macro'])/len(dic_geral['F1-Macro'])\n", " F1_w_geral = sum(dic_geral['F1-Weighted'])/len(dic_geral['F1-Weighted'])\n", " QWK_geral = sum(dic_geral['QWK'])/len(dic_geral['QWK'])\n", " print(f\"geral: {F1_m_geral:.2f} & {F1_w_geral:.2f} & {QWK_geral:.2f} &\")\n", " F1_m_media = (F1_m_a + F1_m_b) / 2\n", " F1_w_media = (F1_w_a + F1_w_b) / 2 \n", " QWK_media = (QWK_a + QWK_b) / 2\n", " print(f\"media: {F1_m_media:.2f} & {F1_w_media:.2f} & {QWK_media:.2f} &\")\n", " \"\"\"\n", "\n", "dic_print_global = {}\n", "def gerar_nome(modelo, comp):\n", " global dic_print_global\n", " string = \"\"\n", " if modelo == 'bertimbau-base':\n", " string = f\"jbcs2025_bertimbau_base-C{comp}-encoder_classification-C{comp}_inference_results.jsonl\"\n", " elif modelo == 'mbert':\n", " string = f'jbcs2025_mbert_base-C{comp}-encoder_classification-C{comp}_inference_results.jsonl'\n", " elif modelo == 'bertimbau-large':\n", " string = f\"jbcs2025_bertimbau-large-C{comp}-encoder_classification-C{comp}_inference_results.jsonl\"\n", " elif modelo == \"Llama-essay_only\":\n", " string = f\"jbcs2025_llama31_8b-balanced-C{comp}-llama31_classification_lora-C{comp}-essay_only_inference_results.jsonl\"\n", " elif modelo == \"Llama-full_context\":\n", " string = f\"jbcs2025_Llama-3.1-8B-llama31_classification_lora-C{comp}-full_context-llama31_classification_lora-C{comp}-full_context_inference_results.jsonl\"\n", " elif modelo == \"Phi4-essay_only\":\n", " string = f\"jbcs2025_phi4-balanced-C{comp}-phi4_classification_lora-C{comp}-essay_only_inference_results.jsonl\"\n", " elif modelo == \"Phi4-full_context\":\n", " string = f\"jbcs2025_phi-4-phi4_classification_lora-C{comp}-full_context-phi4_classification_lora-C{comp}-full_context_inference_results.jsonl\"\n", " elif modelo == \"Phi3.5-essay-only\":\n", " string = f\"jbcs2025_phi35-balanced-C{comp}-phi35_classification_lora-C{comp}-essay_only_inference_results.jsonl\"\n", " elif modelo == \"Phi3.5-full_context\":\n", " string = f\"jbcs2025_Phi-3.5-mini-instruct-phi35_classification_lora-C{comp}-full_context-phi35_classification_lora-C{comp}-full_context_inference_results.jsonl\"\n", " #sabias\n", " elif modelo == \"sabia-essay-only\":\n", " string = f\"sabia-3-zero-shot-C{comp}-essay_only_inference_results.jsonl\"\n", " elif modelo == \"sabia-full\":\n", " string = f\"sabia-3-zero-shot-C{comp}-full_context_inference_results.jsonl\"\n", " elif modelo == \"sabia-grader-full\":\n", " string = f\"sabia-3-grader-zero-shot-C{comp}-full_context_inference_results.jsonl\"\n", " elif modelo == \"sabia-grader-essay-only\":\n", " string = f\"sabia-3-grader-zero-shot-C{comp}-essay_only_inference_results.jsonl\"\n", " elif modelo == \"sabia-extractor-full\":\n", " string = f\"sabia-3-extractor-zero-shot-C{comp}-full_context_inference_results.jsonl\"\n", " #gpts\n", " elif modelo == 'gpt4-essay-only':\n", " string = f\"gpt-4o-2024-11-20-zero-shot-C{comp}-essay_only_inference_results.jsonl\"\n", " elif modelo == 'gpt4-full':\n", " string = f\"gpt-4o-2024-11-20-zero-shot-C{comp}-full_context_inference_results.jsonl\"\n", " elif modelo == 'gpt4-grader-full':\n", " string = f\"gpt-4o-2024-11-20-zero-shot-grader-C{comp}-full_context_inference_results.jsonl\"\n", " elif modelo == 'gpt4-grader-essay-only':\n", " string = f\"gpt-4o-2024-11-20-grader-zero-shot-C{comp}-essay_only_inference_results.jsonl\"\n", " #deepseeks\n", " elif modelo == 'deepseek-essay-only':\n", " string = f\"deepseek-reasoner-zero-shot-C{comp}-essay_only_inference_results.jsonl\"\n", " elif modelo == 'deepseek-full':\n", " string = f\"deepseek-reasoner-zero-shot-C{comp}-full_context_inference_results.jsonl\"\n", " elif modelo == 'deepseek-grader-essay-only':\n", " string = f\"deepseek-reasoner-grader-zero-shot-C{comp}-essay_only_inference_results.jsonl\"\n", " elif modelo == \"deepseek-grader-full-context\":\n", " string = f\"deepseek-reasoner-grader-zero-shot-C{comp}-full_context_inference_results.jsonl\"\n", " elif modelo == \"deepseek-extractor-full-context\":\n", " string = f\"deepseek-reasoner-extractor-zero-shot-C{comp}-full_context_inference_results.jsonl\"\n", " if comp == 1:\n", " dic_print_global[f\"{modelo}-A\"] = \"\"\n", " dic_print_global[f\"{modelo}-B\"] = \"\"\n", " dic_print_global[f\"{modelo}-geral\"] = \"\"\n", " dic_print_global[f\"{modelo}-media\"] = \"\"\n", " return string" ] }, { "cell_type": "code", "execution_count": 29, "id": "cebff6ca-2b47-4960-a155-11da9342d707", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "sabia-extractor-full-A: 0.09 & 0.24 & 0.29 &\n", "sabia-extractor-full-B: 0.11 & 0.28 & 0.33 &\n", "sabia-extractor-full-geral: 0.09 & 0.26 & 0.31 &\n", "sabia-extractor-full-media: 0.10 & 0.26 & 0.31 &\n", "sabia-extractor-full-A: 0.21 & 0.34 & 0.29 &\n", "sabia-extractor-full-B: 0.12 & 0.14 & 0.27 &\n", "sabia-extractor-full-geral: 0.15 & 0.21 & 0.28 &\n", "sabia-extractor-full-media: 0.16 & 0.24 & 0.28 &\n", "sabia-extractor-full-A: 0.20 & 0.37 & 0.24 &\n", "sabia-extractor-full-B: 0.20 & 0.21 & 0.19 &\n", "sabia-extractor-full-geral: 0.19 & 0.27 & 0.21 &\n", "sabia-extractor-full-media: 0.20 & 0.29 & 0.21 &\n", "sabia-extractor-full-A: 0.19 & 0.42 & 0.35 &\n", "sabia-extractor-full-B: 0.18 & 0.35 & 0.40 &\n", "sabia-extractor-full-geral: 0.17 & 0.38 & 0.38 &\n", "sabia-extractor-full-media: 0.18 & 0.38 & 0.38 &\n", "sabia-extractor-full-A: 0.22 & 0.25 & 0.46 &\n", "sabia-extractor-full-B: 0.21 & 0.23 & 0.56 &\n", "sabia-extractor-full-geral: 0.23 & 0.23 & 0.52 &\n", "sabia-extractor-full-media: 0.22 & 0.24 & 0.51 &\n" ] } ], "source": [ "#print(f\"Comp C1\")\n", "modelo = 'sabia-extractor-full'\n", "Y_HAT = \"pontuacao\"\n", "NORMALIZACAO = 1\n", "for comp in range(1, 6):\n", " #print(comp)\n", " nome = gerar_nome(modelo, comp)\n", " respostas = pd.read_json(nome, lines=True)\n", " #print(respostas.head())\n", " calcular_media(respostas, index_a, index_b, modelo)" ] }, { "cell_type": "code", "execution_count": 31, "id": "3fa030a0-ea8f-4315-a153-6b4f5dfff3b8", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "sabia-extractor-full-A & 0.09 & 0.24 & 0.29 &0.21 & 0.34 & 0.29 &0.20 & 0.37 & 0.24 &0.19 & 0.42 & 0.35 &0.22 & 0.25 & 0.46 \\\\\n", "sabia-extractor-full-B & 0.11 & 0.28 & 0.33 &0.12 & 0.14 & 0.27 &0.20 & 0.21 & 0.19 &0.18 & 0.35 & 0.40 &0.21 & 0.23 & 0.56 \\\\\n", "sabia-extractor-full-geral & 0.09 & 0.26 & 0.31 &0.15 & 0.21 & 0.28 &0.19 & 0.27 & 0.21 &0.17 & 0.38 & 0.38 &0.23 & 0.23 & 0.52 \\\\\n", "sabia-extractor-full-media & 0.10 & 0.26 & 0.31 &0.16 & 0.24 & 0.28 &0.20 & 0.29 & 0.21 &0.18 & 0.38 & 0.38 &0.22 & 0.24 & 0.51 \\\\\n" ] } ], "source": [ "for key in dic_print_global:\n", " print(f\"{key} & {dic_print_global[key][:-2] } \\\\\\\\\")" ] }, { "cell_type": "code", "execution_count": null, "id": "4a60f717-93de-4b80-907a-d1ae06f7db63", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.19" } }, "nbformat": 4, "nbformat_minor": 5 }