abarbosa commited on
Commit
ff634e1
·
1 Parent(s): be865c9

add tucano results to experiments

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. bootstrap_confidence_intervals-00000-of-00001.parquet +2 -2
  2. bootstrap_confidence_intervals_Macro_F1_table.txt +8 -0
  3. bootstrap_confidence_intervals_QWK_table.txt +8 -0
  4. bootstrap_confidence_intervals_Weighted_F1_table.txt +8 -0
  5. create_latex_tables.py +1 -1
  6. create_parquet_files.py +8 -0
  7. evaluation_results-00000-of-00001.parquet +2 -2
  8. evaluation_table_avg_only.txt +8 -0
  9. evaluation_table_full.txt +20 -0
  10. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16-tucano_classification_lora-C1-essay_only-r16/.hydra/config.yaml +46 -0
  11. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16-tucano_classification_lora-C1-essay_only-r16/.hydra/hydra.yaml +157 -0
  12. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16-tucano_classification_lora-C1-essay_only-r16/.hydra/overrides.yaml +1 -0
  13. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16-tucano_classification_lora-C1-essay_only-r16/bootstrap_confidence_intervals.csv +2 -0
  14. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16-tucano_classification_lora-C1-essay_only-r16/evaluation_results.csv +2 -0
  15. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16-tucano_classification_lora-C1-essay_only-r16/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16-tucano_classification_lora-C1-essay_only-r16_inference_results.jsonl +0 -0
  16. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16-tucano_classification_lora-C1-essay_only-r16/run_inference_experiment.log +166 -0
  17. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8-tucano_classification_lora-C1-essay_only-r8/.hydra/config.yaml +46 -0
  18. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8-tucano_classification_lora-C1-essay_only-r8/.hydra/hydra.yaml +157 -0
  19. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8-tucano_classification_lora-C1-essay_only-r8/.hydra/overrides.yaml +1 -0
  20. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8-tucano_classification_lora-C1-essay_only-r8/bootstrap_confidence_intervals.csv +2 -0
  21. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8-tucano_classification_lora-C1-essay_only-r8/evaluation_results.csv +2 -0
  22. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8-tucano_classification_lora-C1-essay_only-r8/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8-tucano_classification_lora-C1-essay_only-r8_inference_results.jsonl +0 -0
  23. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8-tucano_classification_lora-C1-essay_only-r8/run_inference_experiment.log +166 -0
  24. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16-tucano_classification_lora-C1-full_context-r16/.hydra/config.yaml +46 -0
  25. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16-tucano_classification_lora-C1-full_context-r16/.hydra/hydra.yaml +157 -0
  26. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16-tucano_classification_lora-C1-full_context-r16/.hydra/overrides.yaml +1 -0
  27. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16-tucano_classification_lora-C1-full_context-r16/bootstrap_confidence_intervals.csv +2 -0
  28. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16-tucano_classification_lora-C1-full_context-r16/evaluation_results.csv +2 -0
  29. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16-tucano_classification_lora-C1-full_context-r16/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16-tucano_classification_lora-C1-full_context-r16_inference_results.jsonl +0 -0
  30. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16-tucano_classification_lora-C1-full_context-r16/run_inference_experiment.log +166 -0
  31. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8-tucano_classification_lora-C1-full_context-r8/.hydra/config.yaml +46 -0
  32. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8-tucano_classification_lora-C1-full_context-r8/.hydra/hydra.yaml +157 -0
  33. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8-tucano_classification_lora-C1-full_context-r8/.hydra/overrides.yaml +1 -0
  34. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8-tucano_classification_lora-C1-full_context-r8/bootstrap_confidence_intervals.csv +2 -0
  35. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8-tucano_classification_lora-C1-full_context-r8/evaluation_results.csv +2 -0
  36. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8-tucano_classification_lora-C1-full_context-r8/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8-tucano_classification_lora-C1-full_context-r8_inference_results.jsonl +0 -0
  37. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8-tucano_classification_lora-C1-full_context-r8/run_inference_experiment.log +166 -0
  38. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16-tucano_classification_lora-C2-essay_only-r16/.hydra/config.yaml +46 -0
  39. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16-tucano_classification_lora-C2-essay_only-r16/.hydra/hydra.yaml +157 -0
  40. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16-tucano_classification_lora-C2-essay_only-r16/.hydra/overrides.yaml +1 -0
  41. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16-tucano_classification_lora-C2-essay_only-r16/bootstrap_confidence_intervals.csv +2 -0
  42. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16-tucano_classification_lora-C2-essay_only-r16/evaluation_results.csv +2 -0
  43. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16-tucano_classification_lora-C2-essay_only-r16/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16-tucano_classification_lora-C2-essay_only-r16_inference_results.jsonl +0 -0
  44. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16-tucano_classification_lora-C2-essay_only-r16/run_inference_experiment.log +166 -0
  45. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r8-tucano_classification_lora-C2-essay_only-r8/.hydra/config.yaml +46 -0
  46. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r8-tucano_classification_lora-C2-essay_only-r8/.hydra/hydra.yaml +157 -0
  47. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r8-tucano_classification_lora-C2-essay_only-r8/.hydra/overrides.yaml +1 -0
  48. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r8-tucano_classification_lora-C2-essay_only-r8/bootstrap_confidence_intervals.csv +2 -0
  49. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r8-tucano_classification_lora-C2-essay_only-r8/evaluation_results.csv +2 -0
  50. runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r8-tucano_classification_lora-C2-essay_only-r8/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r8-tucano_classification_lora-C2-essay_only-r8_inference_results.jsonl +0 -0
bootstrap_confidence_intervals-00000-of-00001.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d101a205372368df6478009661ef2bfa9e351614f323168d7e596b4f77e5ce77
3
- size 32059
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4225cace413654252cbb06c68342c266aa8dc12eb4c2ab878cdace0b985b9d1e
3
+ size 33112
bootstrap_confidence_intervals_Macro_F1_table.txt CHANGED
@@ -35,6 +35,14 @@ phi4-lora-essay-only-r8 & 0.37 & 0.64 & 0.21 & 0.39 & 0.18 & 0.32 & 0.19 & 0.42
35
  phi4-lora-full-context-r16 & 0.31 & 0.55 & 0.32 & 0.54 & 0.32 & 0.53 & 0.23 & 0.48 & 0.21 & 0.39 \\
36
  \hline
37
  phi4-lora-full-context-r8 & 0.36 & 0.61 & 0.31 & 0.54 & 0.27 & 0.48 & 0.24 & 0.48 & 0.23 & 0.37 \\
 
 
 
 
 
 
 
 
38
  \hline\hline
39
  deepseekR1-extractor-essay\_only & 0.03 & 0.14 & 0.00 & 0.03 & 0.19 & 0.37 & 0.23 & 0.46 & 0.28 & 0.42 \\
40
  deepseekR1-extractor-full\_context & 0.01 & 0.06 & 0.19 & 0.38 & 0.24 & 0.40 & 0.26 & 0.50 & 0.30 & 0.45 \\
 
35
  phi4-lora-full-context-r16 & 0.31 & 0.55 & 0.32 & 0.54 & 0.32 & 0.53 & 0.23 & 0.48 & 0.21 & 0.39 \\
36
  \hline
37
  phi4-lora-full-context-r8 & 0.36 & 0.61 & 0.31 & 0.54 & 0.27 & 0.48 & 0.24 & 0.48 & 0.23 & 0.37 \\
38
+ \hline
39
+ tucano2b4-lora-essay-only-r16 & 0.38 & 0.65 & 0.12 & 0.23 & 0.18 & 0.32 & 0.23 & 0.56 & 0.19 & 0.35 \\
40
+ \hline
41
+ tucano2b4-lora-essay-only-r8 & 0.38 & 0.66 & 0.11 & 0.20 & 0.18 & 0.34 & 0.22 & 0.46 & 0.19 & 0.31 \\
42
+ \hline
43
+ tucano2b4-lora-full-context-r16 & 0.31 & 0.51 & 0.13 & 0.28 & 0.15 & 0.30 & 0.27 & 0.52 & 0.19 & 0.31 \\
44
+ \hline
45
+ tucano2b4-lora-full-context-r8 & 0.31 & 0.55 & 0.16 & 0.30 & 0.17 & 0.34 & 0.22 & 0.50 & 0.14 & 0.25 \\
46
  \hline\hline
47
  deepseekR1-extractor-essay\_only & 0.03 & 0.14 & 0.00 & 0.03 & 0.19 & 0.37 & 0.23 & 0.46 & 0.28 & 0.42 \\
48
  deepseekR1-extractor-full\_context & 0.01 & 0.06 & 0.19 & 0.38 & 0.24 & 0.40 & 0.26 & 0.50 & 0.30 & 0.45 \\
bootstrap_confidence_intervals_QWK_table.txt CHANGED
@@ -35,6 +35,14 @@ phi4-lora-essay-only-r8 & 0.57 & 0.75 & 0.18 & 0.47 & 0.17 & 0.48 & 0.35 & 0.60
35
  phi4-lora-full-context-r16 & 0.51 & 0.70 & 0.47 & 0.71 & 0.53 & 0.76 & 0.49 & 0.68 & 0.40 & 0.64 \\
36
  \hline
37
  phi4-lora-full-context-r8 & 0.57 & 0.75 & 0.46 & 0.70 & 0.45 & 0.68 & 0.43 & 0.65 & 0.38 & 0.64 \\
 
 
 
 
 
 
 
 
38
  \hline\hline
39
  deepseekR1-extractor-essay\_only & 0.15 & 0.27 & -0.02 & 0.00 & 0.27 & 0.53 & 0.42 & 0.62 & 0.49 & 0.73 \\
40
  deepseekR1-extractor-full\_context & 0.15 & 0.26 & 0.39 & 0.63 & 0.40 & 0.64 & 0.45 & 0.66 & 0.48 & 0.73 \\
 
35
  phi4-lora-full-context-r16 & 0.51 & 0.70 & 0.47 & 0.71 & 0.53 & 0.76 & 0.49 & 0.68 & 0.40 & 0.64 \\
36
  \hline
37
  phi4-lora-full-context-r8 & 0.57 & 0.75 & 0.46 & 0.70 & 0.45 & 0.68 & 0.43 & 0.65 & 0.38 & 0.64 \\
38
+ \hline
39
+ tucano2b4-lora-essay-only-r16 & 0.56 & 0.76 & 0.07 & 0.35 & 0.21 & 0.49 & 0.36 & 0.63 & 0.40 & 0.65 \\
40
+ \hline
41
+ tucano2b4-lora-essay-only-r8 & 0.54 & 0.75 & 0.07 & 0.38 & 0.22 & 0.50 & 0.36 & 0.61 & 0.45 & 0.68 \\
42
+ \hline
43
+ tucano2b4-lora-full-context-r16 & 0.43 & 0.65 & 0.07 & 0.39 & 0.07 & 0.39 & 0.39 & 0.64 & 0.28 & 0.56 \\
44
+ \hline
45
+ tucano2b4-lora-full-context-r8 & 0.45 & 0.67 & 0.10 & 0.44 & 0.07 & 0.39 & 0.39 & 0.63 & 0.08 & 0.39 \\
46
  \hline\hline
47
  deepseekR1-extractor-essay\_only & 0.15 & 0.27 & -0.02 & 0.00 & 0.27 & 0.53 & 0.42 & 0.62 & 0.49 & 0.73 \\
48
  deepseekR1-extractor-full\_context & 0.15 & 0.26 & 0.39 & 0.63 & 0.40 & 0.64 & 0.45 & 0.66 & 0.48 & 0.73 \\
bootstrap_confidence_intervals_Weighted_F1_table.txt CHANGED
@@ -35,6 +35,14 @@ phi4-lora-essay-only-r8 & 0.53 & 0.69 & 0.28 & 0.45 & 0.23 & 0.39 & 0.49 & 0.67
35
  phi4-lora-full-context-r16 & 0.49 & 0.66 & 0.41 & 0.59 & 0.39 & 0.56 & 0.42 & 0.59 & 0.24 & 0.40 \\
36
  \hline
37
  phi4-lora-full-context-r8 & 0.54 & 0.70 & 0.39 & 0.56 & 0.29 & 0.46 & 0.49 & 0.66 & 0.23 & 0.39 \\
 
 
 
 
 
 
 
 
38
  \hline\hline
39
  deepseekR1-extractor-essay\_only & 0.06 & 0.19 & 0.00 & 0.04 & 0.24 & 0.40 & 0.44 & 0.61 & 0.30 & 0.47 \\
40
  deepseekR1-extractor-full\_context & 0.03 & 0.14 & 0.23 & 0.41 & 0.31 & 0.49 & 0.51 & 0.67 & 0.33 & 0.51 \\
 
35
  phi4-lora-full-context-r16 & 0.49 & 0.66 & 0.41 & 0.59 & 0.39 & 0.56 & 0.42 & 0.59 & 0.24 & 0.40 \\
36
  \hline
37
  phi4-lora-full-context-r8 & 0.54 & 0.70 & 0.39 & 0.56 & 0.29 & 0.46 & 0.49 & 0.66 & 0.23 & 0.39 \\
38
+ \hline
39
+ tucano2b4-lora-essay-only-r16 & 0.57 & 0.74 & 0.15 & 0.29 & 0.22 & 0.38 & 0.50 & 0.66 & 0.21 & 0.36 \\
40
+ \hline
41
+ tucano2b4-lora-essay-only-r8 & 0.56 & 0.72 & 0.12 & 0.27 & 0.26 & 0.42 & 0.48 & 0.65 & 0.22 & 0.37 \\
42
+ \hline
43
+ tucano2b4-lora-full-context-r16 & 0.50 & 0.67 & 0.18 & 0.33 & 0.19 & 0.34 & 0.51 & 0.67 & 0.21 & 0.37 \\
44
+ \hline
45
+ tucano2b4-lora-full-context-r8 & 0.47 & 0.64 & 0.25 & 0.41 & 0.21 & 0.37 & 0.42 & 0.59 & 0.16 & 0.31 \\
46
  \hline\hline
47
  deepseekR1-extractor-essay\_only & 0.06 & 0.19 & 0.00 & 0.04 & 0.24 & 0.40 & 0.44 & 0.61 & 0.30 & 0.47 \\
48
  deepseekR1-extractor-full\_context & 0.03 & 0.14 & 0.23 & 0.41 & 0.31 & 0.49 & 0.51 & 0.67 & 0.33 & 0.51 \\
create_latex_tables.py CHANGED
@@ -99,7 +99,7 @@ class ExperimentIdParser:
99
 
100
  # Group definitions
101
  GROUP_1_PREFIXES = ["bertimbau", "bertugues", "mbert", "albertina"]
102
- GROUP_2_PREFIXES = ["phi3.5", "phi4", "llama3.1"]
103
  GROUP_3_PREFIXES = ["sabia3", "deepseekr1", "gpt4o"]
104
 
105
 
 
99
 
100
  # Group definitions
101
  GROUP_1_PREFIXES = ["bertimbau", "bertugues", "mbert", "albertina"]
102
+ GROUP_2_PREFIXES = ["phi3.5", "phi4", "llama3.1", "tucano2b4"]
103
  GROUP_3_PREFIXES = ["sabia3", "deepseekr1", "gpt4o"]
104
 
105
 
create_parquet_files.py CHANGED
@@ -83,6 +83,7 @@ def simplify_experiment_name(name):
83
  'phi35_classification_lora',
84
  'phi4_classification_lora',
85
  'encoder_classification'
 
86
  ]
87
 
88
  for pattern in duplication_patterns:
@@ -112,6 +113,12 @@ def simplify_experiment_name(name):
112
  name = name.replace('Llama-3.1-8B-llama31_classification_lora', 'llama3.1-8b-lora')
113
  elif 'Llama-3.1-8B' in name:
114
  name = name.replace('Llama-3.1-8B', 'llama3.1-8b-lora')
 
 
 
 
 
 
115
 
116
  # Handle Phi variants
117
  elif 'Phi-3.5-mini-instruct-phi35_classification_lora' in name:
@@ -129,6 +136,7 @@ def simplify_experiment_name(name):
129
  name = name.replace('-llama31', '')
130
  name = name.replace('-phi35', '')
131
  name = name.replace('-phi4', '')
 
132
 
133
  # Extract components and reorder
134
  parts = name.split('-')
 
83
  'phi35_classification_lora',
84
  'phi4_classification_lora',
85
  'encoder_classification'
86
+ 'tucano_classification_lora'
87
  ]
88
 
89
  for pattern in duplication_patterns:
 
113
  name = name.replace('Llama-3.1-8B-llama31_classification_lora', 'llama3.1-8b-lora')
114
  elif 'Llama-3.1-8B' in name:
115
  name = name.replace('Llama-3.1-8B', 'llama3.1-8b-lora')
116
+
117
+ # Handle Tucano variants
118
+ elif 'Tucano-2b4-Instruct-tucano_classification_lora' in name:
119
+ name = name.replace('Tucano-2b4-Instruct-tucano_classification_lora', 'tucano2b4-lora')
120
+ elif 'Tucano-2b4-Instruct' in name:
121
+ name = name.replace('Tucano-2b4-Instruct', 'tucano2b4-lora')
122
 
123
  # Handle Phi variants
124
  elif 'Phi-3.5-mini-instruct-phi35_classification_lora' in name:
 
136
  name = name.replace('-llama31', '')
137
  name = name.replace('-phi35', '')
138
  name = name.replace('-phi4', '')
139
+ name = name.replace('-tucano', '')
140
 
141
  # Extract components and reorder
142
  parts = name.split('-')
evaluation_results-00000-of-00001.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8143907ca5c4222c0fcf157b9784d1b1699170d30b31e6c4f2305c0b53b4b01b
3
- size 75573
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84870958125768914592b2ff017e851dd47749364b49123bef1ce60d0c094d15
3
+ size 77396
evaluation_table_avg_only.txt CHANGED
@@ -35,6 +35,14 @@ phi4-lora-essay-only-r8-avg(A,B) & 0.50 & 0.61 & 0.67 & 0.28 & 0.39 & 0.34 & 0.2
35
  phi4-lora-full-context-r16-avg(A,B) & 0.41 & 0.58 & 0.61 & 0.42 & 0.52 & 0.60 & 0.42 & 0.48 & 0.66 & 0.35 & 0.50 & 0.60 & 0.29 & 0.33 & 0.53 \\
36
  \hline
37
  phi4-lora-full-context-r8-avg(A,B) & 0.48 & 0.63 & 0.67 & 0.40 & 0.50 & 0.59 & 0.37 & 0.38 & 0.57 & 0.37 & 0.58 & 0.55 & 0.29 & 0.32 & 0.52 \\
 
 
 
 
 
 
 
 
38
  \hline\hline
39
  deepseekR1-extractor-essay\_only-avg(A,B) & 0.07 & 0.12 & 0.21 & 0.01 & 0.01 & -0.01 & 0.27 & 0.34 & 0.41 & 0.33 & 0.53 & 0.53 & 0.35 & 0.39 & 0.62 \\
40
  deepseekR1-extractor-full\_context-avg(A,B) & 0.04 & 0.08 & 0.20 & 0.27 & 0.34 & 0.51 & 0.30 & 0.41 & 0.52 & 0.37 & 0.60 & 0.56 & 0.37 & 0.42 & 0.61 \\
 
35
  phi4-lora-full-context-r16-avg(A,B) & 0.41 & 0.58 & 0.61 & 0.42 & 0.52 & 0.60 & 0.42 & 0.48 & 0.66 & 0.35 & 0.50 & 0.60 & 0.29 & 0.33 & 0.53 \\
36
  \hline
37
  phi4-lora-full-context-r8-avg(A,B) & 0.48 & 0.63 & 0.67 & 0.40 & 0.50 & 0.59 & 0.37 & 0.38 & 0.57 & 0.37 & 0.58 & 0.55 & 0.29 & 0.32 & 0.52 \\
38
+ \hline
39
+ tucano2b4-lora-essay-only-r16-avg(A,B) & 0.52 & 0.66 & 0.67 & 0.15 & 0.24 & 0.22 & 0.24 & 0.31 & 0.36 & 0.40 & 0.58 & 0.50 & 0.26 & 0.29 & 0.54 \\
40
+ \hline
41
+ tucano2b4-lora-essay-only-r8-avg(A,B) & 0.52 & 0.64 & 0.66 & 0.14 & 0.22 & 0.23 & 0.25 & 0.35 & 0.36 & 0.34 & 0.57 & 0.49 & 0.25 & 0.30 & 0.58 \\
42
+ \hline
43
+ tucano2b4-lora-full-context-r16-avg(A,B) & 0.40 & 0.59 & 0.54 & 0.19 & 0.27 & 0.24 & 0.22 & 0.27 & 0.24 & 0.39 & 0.59 & 0.52 & 0.25 & 0.29 & 0.43 \\
44
+ \hline
45
+ tucano2b4-lora-full-context-r8-avg(A,B) & 0.43 & 0.56 & 0.57 & 0.21 & 0.35 & 0.28 & 0.24 & 0.31 & 0.24 & 0.37 & 0.51 & 0.52 & 0.19 & 0.24 & 0.24 \\
46
  \hline\hline
47
  deepseekR1-extractor-essay\_only-avg(A,B) & 0.07 & 0.12 & 0.21 & 0.01 & 0.01 & -0.01 & 0.27 & 0.34 & 0.41 & 0.33 & 0.53 & 0.53 & 0.35 & 0.39 & 0.62 \\
48
  deepseekR1-extractor-full\_context-avg(A,B) & 0.04 & 0.08 & 0.20 & 0.27 & 0.34 & 0.51 & 0.30 & 0.41 & 0.52 & 0.37 & 0.60 & 0.56 & 0.37 & 0.42 & 0.61 \\
evaluation_table_full.txt CHANGED
@@ -86,6 +86,26 @@ phi4-lora-full-context-r8-avg(A,B) & 0.48 & 0.63 & 0.67 & 0.40 & 0.50 & 0.59 & 0
86
  phi4-lora-full-context-r8-concat(A,B) & 0.43 & 0.62 & 0.67 & 0.39 & 0.47 & 0.59 & 0.34 & 0.37 & 0.57 & 0.33 & 0.58 & 0.55 & 0.30 & 0.31 & 0.52 \\
87
  phi4-lora-full-context-r8-onlyA & 0.45 & 0.61 & 0.66 & 0.28 & 0.46 & 0.56 & 0.25 & 0.33 & 0.53 & 0.30 & 0.58 & 0.50 & 0.25 & 0.28 & 0.49 \\
88
  phi4-lora-full-context-r8-onlyB & 0.52 & 0.64 & 0.68 & 0.53 & 0.54 & 0.62 & 0.49 & 0.44 & 0.61 & 0.44 & 0.57 & 0.60 & 0.34 & 0.35 & 0.55 \\
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
  \hline\hline
90
  deepseekR1-extractor-essay\_only-avg(A,B) & 0.07 & 0.12 & 0.21 & 0.01 & 0.01 & -0.01 & 0.27 & 0.34 & 0.41 & 0.33 & 0.53 & 0.53 & 0.35 & 0.39 & 0.62 \\
91
  deepseekR1-extractor-essay\_only-concat(A,B) & 0.07 & 0.12 & 0.21 & 0.01 & 0.01 & -0.01 & 0.25 & 0.32 & 0.40 & 0.28 & 0.53 & 0.53 & 0.36 & 0.38 & 0.62 \\
 
86
  phi4-lora-full-context-r8-concat(A,B) & 0.43 & 0.62 & 0.67 & 0.39 & 0.47 & 0.59 & 0.34 & 0.37 & 0.57 & 0.33 & 0.58 & 0.55 & 0.30 & 0.31 & 0.52 \\
87
  phi4-lora-full-context-r8-onlyA & 0.45 & 0.61 & 0.66 & 0.28 & 0.46 & 0.56 & 0.25 & 0.33 & 0.53 & 0.30 & 0.58 & 0.50 & 0.25 & 0.28 & 0.49 \\
88
  phi4-lora-full-context-r8-onlyB & 0.52 & 0.64 & 0.68 & 0.53 & 0.54 & 0.62 & 0.49 & 0.44 & 0.61 & 0.44 & 0.57 & 0.60 & 0.34 & 0.35 & 0.55 \\
89
+ \hline
90
+ tucano2b4-lora-essay-only-r16-avg(A,B) & 0.52 & 0.66 & 0.67 & 0.15 & 0.24 & 0.22 & 0.24 & 0.31 & 0.36 & 0.40 & 0.58 & 0.50 & 0.26 & 0.29 & 0.54 \\
91
+ tucano2b4-lora-essay-only-r16-concat(A,B) & 0.46 & 0.66 & 0.67 & 0.17 & 0.22 & 0.22 & 0.24 & 0.30 & 0.36 & 0.39 & 0.58 & 0.50 & 0.27 & 0.28 & 0.54 \\
92
+ tucano2b4-lora-essay-only-r16-onlyA & 0.42 & 0.62 & 0.62 & 0.15 & 0.23 & 0.20 & 0.20 & 0.28 & 0.33 & 0.21 & 0.52 & 0.38 & 0.23 & 0.29 & 0.52 \\
93
+ tucano2b4-lora-essay-only-r16-onlyB & 0.63 & 0.70 & 0.72 & 0.16 & 0.25 & 0.24 & 0.28 & 0.34 & 0.39 & 0.59 & 0.64 & 0.62 & 0.30 & 0.29 & 0.55 \\
94
+ \hline
95
+ tucano2b4-lora-essay-only-r8-avg(A,B) & 0.52 & 0.64 & 0.66 & 0.14 & 0.22 & 0.23 & 0.25 & 0.35 & 0.36 & 0.34 & 0.57 & 0.49 & 0.25 & 0.30 & 0.58 \\
96
+ tucano2b4-lora-essay-only-r8-concat(A,B) & 0.47 & 0.64 & 0.65 & 0.15 & 0.20 & 0.23 & 0.26 & 0.34 & 0.36 & 0.32 & 0.56 & 0.50 & 0.25 & 0.29 & 0.58 \\
97
+ tucano2b4-lora-essay-only-r8-onlyA & 0.47 & 0.62 & 0.62 & 0.08 & 0.12 & 0.17 & 0.25 & 0.39 & 0.36 & 0.23 & 0.52 & 0.41 & 0.26 & 0.33 & 0.56 \\
98
+ tucano2b4-lora-essay-only-r8-onlyB & 0.58 & 0.66 & 0.69 & 0.20 & 0.32 & 0.30 & 0.25 & 0.30 & 0.36 & 0.45 & 0.61 & 0.58 & 0.23 & 0.27 & 0.59 \\
99
+ \hline
100
+ tucano2b4-lora-full-context-r16-avg(A,B) & 0.40 & 0.59 & 0.54 & 0.19 & 0.27 & 0.24 & 0.22 & 0.27 & 0.24 & 0.39 & 0.59 & 0.52 & 0.25 & 0.29 & 0.43 \\
101
+ tucano2b4-lora-full-context-r16-concat(A,B) & 0.40 & 0.59 & 0.54 & 0.19 & 0.25 & 0.23 & 0.21 & 0.26 & 0.24 & 0.40 & 0.59 & 0.52 & 0.25 & 0.29 & 0.42 \\
102
+ tucano2b4-lora-full-context-r16-onlyA & 0.37 & 0.54 & 0.47 & 0.14 & 0.25 & 0.16 & 0.18 & 0.28 & 0.25 & 0.35 & 0.58 & 0.44 & 0.28 & 0.33 & 0.43 \\
103
+ tucano2b4-lora-full-context-r16-onlyB & 0.43 & 0.64 & 0.61 & 0.24 & 0.29 & 0.31 & 0.26 & 0.26 & 0.22 & 0.43 & 0.61 & 0.60 & 0.21 & 0.26 & 0.42 \\
104
+ \hline
105
+ tucano2b4-lora-full-context-r8-avg(A,B) & 0.43 & 0.56 & 0.57 & 0.21 & 0.35 & 0.28 & 0.24 & 0.31 & 0.24 & 0.37 & 0.51 & 0.52 & 0.19 & 0.24 & 0.24 \\
106
+ tucano2b4-lora-full-context-r8-concat(A,B) & 0.38 & 0.56 & 0.57 & 0.21 & 0.33 & 0.28 & 0.24 & 0.29 & 0.23 & 0.34 & 0.50 & 0.52 & 0.20 & 0.23 & 0.24 \\
107
+ tucano2b4-lora-full-context-r8-onlyA & 0.39 & 0.55 & 0.57 & 0.22 & 0.41 & 0.24 & 0.20 & 0.35 & 0.30 & 0.28 & 0.47 & 0.45 & 0.20 & 0.23 & 0.21 \\
108
+ tucano2b4-lora-full-context-r8-onlyB & 0.46 & 0.58 & 0.57 & 0.21 & 0.28 & 0.32 & 0.29 & 0.27 & 0.18 & 0.46 & 0.54 & 0.59 & 0.19 & 0.24 & 0.26 \\
109
  \hline\hline
110
  deepseekR1-extractor-essay\_only-avg(A,B) & 0.07 & 0.12 & 0.21 & 0.01 & 0.01 & -0.01 & 0.27 & 0.34 & 0.41 & 0.33 & 0.53 & 0.53 & 0.35 & 0.39 & 0.62 \\
111
  deepseekR1-extractor-essay\_only-concat(A,B) & 0.07 & 0.12 & 0.21 & 0.01 & 0.01 & -0.01 & 0.25 & 0.32 & 0.40 & 0.28 & 0.53 & 0.53 & 0.36 & 0.38 & 0.62 \\
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16-tucano_classification_lora-C1-essay_only-r16/.hydra/config.yaml ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ cache_dir: /tmp/
2
+ dataset:
3
+ name: kamel-usp/aes_enem_dataset
4
+ split: JBCS2025
5
+ training_params:
6
+ seed: 42
7
+ num_train_epochs: 20
8
+ logging_steps: 100
9
+ metric_for_best_model: QWK
10
+ bf16: true
11
+ bootstrap:
12
+ enabled: true
13
+ n_bootstrap: 10000
14
+ bootstrap_seed: 42
15
+ metrics:
16
+ - QWK
17
+ - Macro_F1
18
+ - Weighted_F1
19
+ post_training_results:
20
+ model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
21
+ experiments:
22
+ model:
23
+ name: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16
24
+ type: tucano_classification_lora
25
+ num_labels: 6
26
+ output_dir: ./results/
27
+ logging_dir: ./logs/
28
+ best_model_dir: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16
29
+ lora_r: 16
30
+ lora_dropout: 0.1
31
+ lora_alpha: 32
32
+ lora_target_modules: all-linear
33
+ checkpoint_path: ''
34
+ tokenizer:
35
+ name: TucanoBR/Tucano-2b4-Instruct
36
+ dataset:
37
+ grade_index: 0
38
+ use_full_context: false
39
+ training_params:
40
+ weight_decay: 0.01
41
+ warmup_ratio: 0.1
42
+ learning_rate: 5.0e-05
43
+ train_batch_size: 8
44
+ eval_batch_size: 4
45
+ gradient_accumulation_steps: 2
46
+ gradient_checkpointing: true
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16-tucano_classification_lora-C1-essay_only-r16/.hydra/hydra.yaml ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: inference_output/2025-07-13/19-05-14
4
+ sweep:
5
+ dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ simple:
72
+ format: '[%(asctime)s][HYDRA] %(message)s'
73
+ handlers:
74
+ console:
75
+ class: logging.StreamHandler
76
+ formatter: simple
77
+ stream: ext://sys.stdout
78
+ root:
79
+ level: INFO
80
+ handlers:
81
+ - console
82
+ loggers:
83
+ logging_example:
84
+ level: DEBUG
85
+ disable_existing_loggers: false
86
+ job_logging:
87
+ version: 1
88
+ formatters:
89
+ simple:
90
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
91
+ handlers:
92
+ console:
93
+ class: logging.StreamHandler
94
+ formatter: simple
95
+ stream: ext://sys.stdout
96
+ file:
97
+ class: logging.FileHandler
98
+ formatter: simple
99
+ filename: ${hydra.runtime.output_dir}/${hydra.job.name}.log
100
+ root:
101
+ level: INFO
102
+ handlers:
103
+ - console
104
+ - file
105
+ disable_existing_loggers: false
106
+ env: {}
107
+ mode: RUN
108
+ searchpath: []
109
+ callbacks: {}
110
+ output_subdir: .hydra
111
+ overrides:
112
+ hydra:
113
+ - hydra.run.dir=inference_output/2025-07-13/19-05-14
114
+ - hydra.mode=RUN
115
+ task:
116
+ - experiments=temp_inference/kamel-usp_jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16
117
+ job:
118
+ name: run_inference_experiment
119
+ chdir: null
120
+ override_dirname: experiments=temp_inference/kamel-usp_jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16
121
+ id: ???
122
+ num: ???
123
+ config_name: config
124
+ env_set: {}
125
+ env_copy: []
126
+ config:
127
+ override_dirname:
128
+ kv_sep: '='
129
+ item_sep: ','
130
+ exclude_keys: []
131
+ runtime:
132
+ version: 1.3.2
133
+ version_base: '1.1'
134
+ cwd: /workspace/jbcs2025
135
+ config_sources:
136
+ - path: hydra.conf
137
+ schema: pkg
138
+ provider: hydra
139
+ - path: /workspace/jbcs2025/configs
140
+ schema: file
141
+ provider: main
142
+ - path: ''
143
+ schema: structured
144
+ provider: schema
145
+ output_dir: /workspace/jbcs2025/inference_output/2025-07-13/19-05-14
146
+ choices:
147
+ experiments: temp_inference/kamel-usp_jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16
148
+ hydra/env: default
149
+ hydra/callbacks: null
150
+ hydra/job_logging: default
151
+ hydra/hydra_logging: default
152
+ hydra/hydra_help: default
153
+ hydra/help: default
154
+ hydra/sweeper: basic
155
+ hydra/launcher: basic
156
+ hydra/output: default
157
+ verbose: false
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16-tucano_classification_lora-C1-essay_only-r16/.hydra/overrides.yaml ADDED
@@ -0,0 +1 @@
 
 
1
+ - experiments=temp_inference/kamel-usp_jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16-tucano_classification_lora-C1-essay_only-r16/bootstrap_confidence_intervals.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
+ jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16-tucano_classification_lora-C1-essay_only-r16,2025-07-13 19:05:20,0.6660605871795818,0.5649087373336189,0.759754258752704,0.19484552141908507,0.4960154879519803,0.3776119517656355,0.6508110988620321,0.27319914709639664,0.6561547817502508,0.5735970409220825,0.7351317388784108,0.16153469795632824
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16-tucano_classification_lora-C1-essay_only-r16/evaluation_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
+ 0.6521739130434783,26.811202503993453,0.6671853119651471,0.007246376811594235,0.4596197967879384,0.6521739130434783,0.6556581591210294,0,137,0,1,0,138,0,0,8,110,18,2,35,65,7,31,43,68,19,8,4,124,4,6,2025-07-13 19:05:20,jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16-tucano_classification_lora-C1-essay_only-r16
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16-tucano_classification_lora-C1-essay_only-r16/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16-tucano_classification_lora-C1-essay_only-r16_inference_results.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16-tucano_classification_lora-C1-essay_only-r16/run_inference_experiment.log ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2025-07-13 19:05:20,174][__main__][INFO] - Starting inference experiment
2
+ [2025-07-13 19:05:20,176][__main__][INFO] - cache_dir: /tmp/
3
+ dataset:
4
+ name: kamel-usp/aes_enem_dataset
5
+ split: JBCS2025
6
+ training_params:
7
+ seed: 42
8
+ num_train_epochs: 20
9
+ logging_steps: 100
10
+ metric_for_best_model: QWK
11
+ bf16: true
12
+ bootstrap:
13
+ enabled: true
14
+ n_bootstrap: 10000
15
+ bootstrap_seed: 42
16
+ metrics:
17
+ - QWK
18
+ - Macro_F1
19
+ - Weighted_F1
20
+ post_training_results:
21
+ model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
22
+ experiments:
23
+ model:
24
+ name: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16
25
+ type: tucano_classification_lora
26
+ num_labels: 6
27
+ output_dir: ./results/
28
+ logging_dir: ./logs/
29
+ best_model_dir: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16
30
+ lora_r: 16
31
+ lora_dropout: 0.1
32
+ lora_alpha: 32
33
+ lora_target_modules: all-linear
34
+ checkpoint_path: ''
35
+ tokenizer:
36
+ name: TucanoBR/Tucano-2b4-Instruct
37
+ dataset:
38
+ grade_index: 0
39
+ use_full_context: false
40
+ training_params:
41
+ weight_decay: 0.01
42
+ warmup_ratio: 0.1
43
+ learning_rate: 5.0e-05
44
+ train_batch_size: 8
45
+ eval_batch_size: 4
46
+ gradient_accumulation_steps: 2
47
+ gradient_checkpointing: true
48
+
49
+ [2025-07-13 19:05:20,178][__main__][INFO] - Running inference with fine-tuned HF model
50
+ [2025-07-13 19:05:21,196][transformers.tokenization_utils_base][INFO] - loading file tokenizer.model from cache at None
51
+ [2025-07-13 19:05:21,197][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at /tmp/models--TucanoBR--Tucano-2b4-Instruct/snapshots/d763c3ed97909de3b664742dd955bf35d1cca620/tokenizer.json
52
+ [2025-07-13 19:05:21,197][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at None
53
+ [2025-07-13 19:05:21,197][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--TucanoBR--Tucano-2b4-Instruct/snapshots/d763c3ed97909de3b664742dd955bf35d1cca620/special_tokens_map.json
54
+ [2025-07-13 19:05:21,197][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--TucanoBR--Tucano-2b4-Instruct/snapshots/d763c3ed97909de3b664742dd955bf35d1cca620/tokenizer_config.json
55
+ [2025-07-13 19:05:21,197][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
56
+ [2025-07-13 19:05:21,247][transformers.tokenization_utils_base][INFO] - Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
57
+ [2025-07-13 19:05:21,255][__main__][INFO] - Tokenizer function parameters- Padding:longest; Truncation: False; Use Full Context: False
58
+ [2025-07-13 19:05:22,535][__main__][INFO] -
59
+ Token statistics for 'train' split:
60
+ [2025-07-13 19:05:22,535][__main__][INFO] - Total examples: 500
61
+ [2025-07-13 19:05:22,535][__main__][INFO] - Min tokens: 1878
62
+ [2025-07-13 19:05:22,535][__main__][INFO] - Max tokens: 1878
63
+ [2025-07-13 19:05:22,535][__main__][INFO] - Avg tokens: 1878.00
64
+ [2025-07-13 19:05:22,535][__main__][INFO] - Std tokens: 0.00
65
+ [2025-07-13 19:05:22,787][__main__][INFO] -
66
+ Token statistics for 'validation' split:
67
+ [2025-07-13 19:05:22,787][__main__][INFO] - Total examples: 132
68
+ [2025-07-13 19:05:22,787][__main__][INFO] - Min tokens: 1620
69
+ [2025-07-13 19:05:22,787][__main__][INFO] - Max tokens: 1620
70
+ [2025-07-13 19:05:22,787][__main__][INFO] - Avg tokens: 1620.00
71
+ [2025-07-13 19:05:22,787][__main__][INFO] - Std tokens: 0.00
72
+ [2025-07-13 19:05:23,058][__main__][INFO] -
73
+ Token statistics for 'test' split:
74
+ [2025-07-13 19:05:23,058][__main__][INFO] - Total examples: 138
75
+ [2025-07-13 19:05:23,058][__main__][INFO] - Min tokens: 1673
76
+ [2025-07-13 19:05:23,058][__main__][INFO] - Max tokens: 1673
77
+ [2025-07-13 19:05:23,058][__main__][INFO] - Avg tokens: 1673.00
78
+ [2025-07-13 19:05:23,058][__main__][INFO] - Std tokens: 0.00
79
+ [2025-07-13 19:05:23,058][__main__][INFO] - If token statistics are the same (max, avg, min) keep in mind that this is due to batched tokenization and padding.
80
+ [2025-07-13 19:05:23,058][__main__][INFO] - Model max length: 4096. If it is the same as stats, then there is a high chance that sequences are being truncated.
81
+ [2025-07-13 19:05:23,058][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16
82
+ [2025-07-13 19:05:23,058][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16
83
+ [2025-07-13 19:05:23,627][__main__][INFO] - Model need ≈ 14.65 GiB to run inference and 42.44 for training
84
+ [2025-07-13 19:05:23,683][__main__][INFO] - Loading PEFT model configuration from kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16
85
+ [2025-07-13 19:05:23,683][__main__][INFO] - Base model name: TucanoBR/Tucano-2b4-Instruct
86
+ [2025-07-13 19:05:23,724][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--TucanoBR--Tucano-2b4-Instruct/snapshots/d763c3ed97909de3b664742dd955bf35d1cca620/config.json
87
+ [2025-07-13 19:05:23,726][transformers.configuration_utils][INFO] - Model config LlamaConfig {
88
+ "architectures": [
89
+ "LlamaForCausalLM"
90
+ ],
91
+ "attention_bias": false,
92
+ "attention_dropout": 0.0,
93
+ "bos_token_id": 1,
94
+ "eos_token_id": 2,
95
+ "head_dim": 160,
96
+ "hidden_act": "silu",
97
+ "hidden_size": 2560,
98
+ "id2label": {
99
+ "0": "LABEL_0",
100
+ "1": "LABEL_1",
101
+ "2": "LABEL_2",
102
+ "3": "LABEL_3",
103
+ "4": "LABEL_4",
104
+ "5": "LABEL_5"
105
+ },
106
+ "initializer_range": 0.02,
107
+ "intermediate_size": 10240,
108
+ "label2id": {
109
+ "LABEL_0": 0,
110
+ "LABEL_1": 1,
111
+ "LABEL_2": 2,
112
+ "LABEL_3": 3,
113
+ "LABEL_4": 4,
114
+ "LABEL_5": 5
115
+ },
116
+ "max_position_embeddings": 4096,
117
+ "mlp_bias": false,
118
+ "model_type": "llama",
119
+ "num_attention_heads": 16,
120
+ "num_hidden_layers": 24,
121
+ "num_key_value_heads": 4,
122
+ "pad_token_id": 3,
123
+ "pretraining_tp": 1,
124
+ "rms_norm_eps": 1e-05,
125
+ "rope_scaling": null,
126
+ "rope_theta": 10000.0,
127
+ "tie_word_embeddings": false,
128
+ "torch_dtype": "float32",
129
+ "transformers_version": "4.53.2",
130
+ "use_cache": false,
131
+ "vocab_size": 32002
132
+ }
133
+
134
+ [2025-07-13 19:05:23,885][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--TucanoBR--Tucano-2b4-Instruct/snapshots/d763c3ed97909de3b664742dd955bf35d1cca620/model.safetensors.index.json
135
+ [2025-07-13 19:05:23,886][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
136
+ [2025-07-13 19:05:23,886][transformers.modeling_utils][INFO] - Instantiating LlamaForSequenceClassification model under default dtype torch.float32.
137
+ [2025-07-13 19:05:23,887][transformers.modeling_utils][WARNING] - Flash Attention 2.0 only supports torch.float16 and torch.bfloat16 dtypes, but the current dype in LlamaForSequenceClassification is torch.float32. You should run training or inference using Automatic Mixed-Precision via the `with torch.autocast(device_type='torch_device'):` decorator, or load the model with the `torch_dtype` argument. Example: `model = AutoModel.from_pretrained("openai/whisper-tiny", attn_implementation="flash_attention_2", torch_dtype=torch.float16)`
138
+ [2025-07-13 19:05:25,484][transformers.modeling_utils][INFO] - Some weights of the model checkpoint at TucanoBR/Tucano-2b4-Instruct were not used when initializing LlamaForSequenceClassification: ['lm_head.weight']
139
+ - This IS expected if you are initializing LlamaForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
140
+ - This IS NOT expected if you are initializing LlamaForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
141
+ [2025-07-13 19:05:25,484][transformers.modeling_utils][WARNING] - Some weights of LlamaForSequenceClassification were not initialized from the model checkpoint at TucanoBR/Tucano-2b4-Instruct and are newly initialized: ['score.weight']
142
+ You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
143
+ [2025-07-13 19:05:28,236][__main__][INFO] - Loaded fine-tuned PEFT model from kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16
144
+ [2025-07-13 19:05:28,239][__main__][INFO] - None
145
+ [2025-07-13 19:05:28,251][transformers.training_args][INFO] - PyTorch: setting up devices
146
+ [2025-07-13 19:05:28,274][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
147
+ [2025-07-13 19:05:28,283][accelerate.utils.other][WARNING] - Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.
148
+ [2025-07-13 19:05:28,284][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
149
+ [2025-07-13 19:05:28,307][transformers.trainer][INFO] - Using auto half precision backend
150
+ [2025-07-13 19:05:28,307][transformers.trainer][WARNING] - No label_names provided for model class `PeftModelForSequenceClassification`. Since `PeftModel` hides base models input arguments, if label_names is not given, label_names can't be set automatically within `Trainer`. Note that empty label_names list will be used instead.
151
+ [2025-07-13 19:05:28,600][__main__][INFO] - Running inference on test dataset
152
+ [2025-07-13 19:05:28,602][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `PeftModelForSequenceClassification.forward` and have been ignored: id_prompt, essay_year, id, reference, grades, prompt, essay_text, supporting_text. If id_prompt, essay_year, id, reference, grades, prompt, essay_text, supporting_text are not expected by `PeftModelForSequenceClassification.forward`, you can safely ignore this message.
153
+ [2025-07-13 19:05:28,623][transformers.trainer][INFO] -
154
+ ***** Running Prediction *****
155
+ [2025-07-13 19:05:28,623][transformers.trainer][INFO] - Num examples = 138
156
+ [2025-07-13 19:05:28,623][transformers.trainer][INFO] - Batch size = 4
157
+ [2025-07-13 19:05:28,880][transformers.modeling_flash_attention_utils][WARNING] - The input hidden states seems to be silently casted in float32, this might be related to the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in torch.bfloat16.
158
+ [2025-07-13 19:05:48,706][__main__][INFO] - Inference results saved to jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r16-tucano_classification_lora-C1-essay_only-r16_inference_results.jsonl
159
+ [2025-07-13 19:05:48,711][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
160
+ [2025-07-13 19:07:35,230][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
161
+ [2025-07-13 19:07:35,230][__main__][INFO] - Bootstrap Confidence Intervals (95%):
162
+ [2025-07-13 19:07:35,230][__main__][INFO] - QWK: 0.6661 [0.5649, 0.7598]
163
+ [2025-07-13 19:07:35,230][__main__][INFO] - Macro_F1: 0.4960 [0.3776, 0.6508]
164
+ [2025-07-13 19:07:35,230][__main__][INFO] - Weighted_F1: 0.6562 [0.5736, 0.7351]
165
+ [2025-07-13 19:07:35,230][__main__][INFO] - Inference results: {'accuracy': 0.6521739130434783, 'RMSE': 26.811202503993453, 'QWK': 0.6671853119651471, 'HDIV': 0.007246376811594235, 'Macro_F1': 0.4596197967879384, 'Micro_F1': 0.6521739130434783, 'Weighted_F1': 0.6556581591210294, 'TP_0': np.int64(0), 'TN_0': np.int64(137), 'FP_0': np.int64(0), 'FN_0': np.int64(1), 'TP_1': np.int64(0), 'TN_1': np.int64(138), 'FP_1': np.int64(0), 'FN_1': np.int64(0), 'TP_2': np.int64(8), 'TN_2': np.int64(110), 'FP_2': np.int64(18), 'FN_2': np.int64(2), 'TP_3': np.int64(35), 'TN_3': np.int64(65), 'FP_3': np.int64(7), 'FN_3': np.int64(31), 'TP_4': np.int64(43), 'TN_4': np.int64(68), 'FP_4': np.int64(19), 'FN_4': np.int64(8), 'TP_5': np.int64(4), 'TN_5': np.int64(124), 'FP_5': np.int64(4), 'FN_5': np.int64(6)}
166
+ [2025-07-13 19:07:35,230][__main__][INFO] - Inference experiment completed
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8-tucano_classification_lora-C1-essay_only-r8/.hydra/config.yaml ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ cache_dir: /tmp/
2
+ dataset:
3
+ name: kamel-usp/aes_enem_dataset
4
+ split: JBCS2025
5
+ training_params:
6
+ seed: 42
7
+ num_train_epochs: 20
8
+ logging_steps: 100
9
+ metric_for_best_model: QWK
10
+ bf16: true
11
+ bootstrap:
12
+ enabled: true
13
+ n_bootstrap: 10000
14
+ bootstrap_seed: 42
15
+ metrics:
16
+ - QWK
17
+ - Macro_F1
18
+ - Weighted_F1
19
+ post_training_results:
20
+ model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
21
+ experiments:
22
+ model:
23
+ name: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8
24
+ type: tucano_classification_lora
25
+ num_labels: 6
26
+ output_dir: ./results/
27
+ logging_dir: ./logs/
28
+ best_model_dir: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8
29
+ lora_r: 8
30
+ lora_dropout: 0.05
31
+ lora_alpha: 16
32
+ lora_target_modules: all-linear
33
+ checkpoint_path: ''
34
+ tokenizer:
35
+ name: TucanoBR/Tucano-2b4-Instruct
36
+ dataset:
37
+ grade_index: 0
38
+ use_full_context: false
39
+ training_params:
40
+ weight_decay: 0.01
41
+ warmup_ratio: 0.1
42
+ learning_rate: 5.0e-05
43
+ train_batch_size: 8
44
+ eval_batch_size: 4
45
+ gradient_accumulation_steps: 2
46
+ gradient_checkpointing: true
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8-tucano_classification_lora-C1-essay_only-r8/.hydra/hydra.yaml ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: inference_output/2025-07-13/19-02-42
4
+ sweep:
5
+ dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ simple:
72
+ format: '[%(asctime)s][HYDRA] %(message)s'
73
+ handlers:
74
+ console:
75
+ class: logging.StreamHandler
76
+ formatter: simple
77
+ stream: ext://sys.stdout
78
+ root:
79
+ level: INFO
80
+ handlers:
81
+ - console
82
+ loggers:
83
+ logging_example:
84
+ level: DEBUG
85
+ disable_existing_loggers: false
86
+ job_logging:
87
+ version: 1
88
+ formatters:
89
+ simple:
90
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
91
+ handlers:
92
+ console:
93
+ class: logging.StreamHandler
94
+ formatter: simple
95
+ stream: ext://sys.stdout
96
+ file:
97
+ class: logging.FileHandler
98
+ formatter: simple
99
+ filename: ${hydra.runtime.output_dir}/${hydra.job.name}.log
100
+ root:
101
+ level: INFO
102
+ handlers:
103
+ - console
104
+ - file
105
+ disable_existing_loggers: false
106
+ env: {}
107
+ mode: RUN
108
+ searchpath: []
109
+ callbacks: {}
110
+ output_subdir: .hydra
111
+ overrides:
112
+ hydra:
113
+ - hydra.run.dir=inference_output/2025-07-13/19-02-42
114
+ - hydra.mode=RUN
115
+ task:
116
+ - experiments=temp_inference/kamel-usp_jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8
117
+ job:
118
+ name: run_inference_experiment
119
+ chdir: null
120
+ override_dirname: experiments=temp_inference/kamel-usp_jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8
121
+ id: ???
122
+ num: ???
123
+ config_name: config
124
+ env_set: {}
125
+ env_copy: []
126
+ config:
127
+ override_dirname:
128
+ kv_sep: '='
129
+ item_sep: ','
130
+ exclude_keys: []
131
+ runtime:
132
+ version: 1.3.2
133
+ version_base: '1.1'
134
+ cwd: /workspace/jbcs2025
135
+ config_sources:
136
+ - path: hydra.conf
137
+ schema: pkg
138
+ provider: hydra
139
+ - path: /workspace/jbcs2025/configs
140
+ schema: file
141
+ provider: main
142
+ - path: ''
143
+ schema: structured
144
+ provider: schema
145
+ output_dir: /workspace/jbcs2025/inference_output/2025-07-13/19-02-42
146
+ choices:
147
+ experiments: temp_inference/kamel-usp_jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8
148
+ hydra/env: default
149
+ hydra/callbacks: null
150
+ hydra/job_logging: default
151
+ hydra/hydra_logging: default
152
+ hydra/hydra_help: default
153
+ hydra/help: default
154
+ hydra/sweeper: basic
155
+ hydra/launcher: basic
156
+ hydra/output: default
157
+ verbose: false
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8-tucano_classification_lora-C1-essay_only-r8/.hydra/overrides.yaml ADDED
@@ -0,0 +1 @@
 
 
1
+ - experiments=temp_inference/kamel-usp_jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8-tucano_classification_lora-C1-essay_only-r8/bootstrap_confidence_intervals.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
+ jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8-tucano_classification_lora-C1-essay_only-r8,2025-07-13 19:02:48,0.6507828121779963,0.5448168161247899,0.7481935868380011,0.20337677071321114,0.5021917733557918,0.38358598323817006,0.6558073073196127,0.2722213240814426,0.6419113348079484,0.5607762751113807,0.7198630642668818,0.15908678915550112
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8-tucano_classification_lora-C1-essay_only-r8/evaluation_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
+ 0.6376811594202898,27.240208984279956,0.6531573986804902,0.007246376811594235,0.4658552631578948,0.6376811594202898,0.641843058733791,0,137,0,1,0,138,0,0,6,120,8,4,46,56,16,20,29,72,15,22,7,117,11,3,2025-07-13 19:02:48,jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8-tucano_classification_lora-C1-essay_only-r8
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8-tucano_classification_lora-C1-essay_only-r8/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8-tucano_classification_lora-C1-essay_only-r8_inference_results.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8-tucano_classification_lora-C1-essay_only-r8/run_inference_experiment.log ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2025-07-13 19:02:48,480][__main__][INFO] - Starting inference experiment
2
+ [2025-07-13 19:02:48,481][__main__][INFO] - cache_dir: /tmp/
3
+ dataset:
4
+ name: kamel-usp/aes_enem_dataset
5
+ split: JBCS2025
6
+ training_params:
7
+ seed: 42
8
+ num_train_epochs: 20
9
+ logging_steps: 100
10
+ metric_for_best_model: QWK
11
+ bf16: true
12
+ bootstrap:
13
+ enabled: true
14
+ n_bootstrap: 10000
15
+ bootstrap_seed: 42
16
+ metrics:
17
+ - QWK
18
+ - Macro_F1
19
+ - Weighted_F1
20
+ post_training_results:
21
+ model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
22
+ experiments:
23
+ model:
24
+ name: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8
25
+ type: tucano_classification_lora
26
+ num_labels: 6
27
+ output_dir: ./results/
28
+ logging_dir: ./logs/
29
+ best_model_dir: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8
30
+ lora_r: 8
31
+ lora_dropout: 0.05
32
+ lora_alpha: 16
33
+ lora_target_modules: all-linear
34
+ checkpoint_path: ''
35
+ tokenizer:
36
+ name: TucanoBR/Tucano-2b4-Instruct
37
+ dataset:
38
+ grade_index: 0
39
+ use_full_context: false
40
+ training_params:
41
+ weight_decay: 0.01
42
+ warmup_ratio: 0.1
43
+ learning_rate: 5.0e-05
44
+ train_batch_size: 8
45
+ eval_batch_size: 4
46
+ gradient_accumulation_steps: 2
47
+ gradient_checkpointing: true
48
+
49
+ [2025-07-13 19:02:48,483][__main__][INFO] - Running inference with fine-tuned HF model
50
+ [2025-07-13 19:02:51,357][transformers.tokenization_utils_base][INFO] - loading file tokenizer.model from cache at None
51
+ [2025-07-13 19:02:51,357][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at /tmp/models--TucanoBR--Tucano-2b4-Instruct/snapshots/d763c3ed97909de3b664742dd955bf35d1cca620/tokenizer.json
52
+ [2025-07-13 19:02:51,357][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at None
53
+ [2025-07-13 19:02:51,357][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--TucanoBR--Tucano-2b4-Instruct/snapshots/d763c3ed97909de3b664742dd955bf35d1cca620/special_tokens_map.json
54
+ [2025-07-13 19:02:51,357][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--TucanoBR--Tucano-2b4-Instruct/snapshots/d763c3ed97909de3b664742dd955bf35d1cca620/tokenizer_config.json
55
+ [2025-07-13 19:02:51,357][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
56
+ [2025-07-13 19:02:51,405][transformers.tokenization_utils_base][INFO] - Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
57
+ [2025-07-13 19:02:51,477][__main__][INFO] - Tokenizer function parameters- Padding:longest; Truncation: False; Use Full Context: False
58
+ [2025-07-13 19:02:53,323][__main__][INFO] -
59
+ Token statistics for 'train' split:
60
+ [2025-07-13 19:02:53,323][__main__][INFO] - Total examples: 500
61
+ [2025-07-13 19:02:53,323][__main__][INFO] - Min tokens: 1878
62
+ [2025-07-13 19:02:53,323][__main__][INFO] - Max tokens: 1878
63
+ [2025-07-13 19:02:53,324][__main__][INFO] - Avg tokens: 1878.00
64
+ [2025-07-13 19:02:53,324][__main__][INFO] - Std tokens: 0.00
65
+ [2025-07-13 19:02:53,566][__main__][INFO] -
66
+ Token statistics for 'validation' split:
67
+ [2025-07-13 19:02:53,566][__main__][INFO] - Total examples: 132
68
+ [2025-07-13 19:02:53,566][__main__][INFO] - Min tokens: 1620
69
+ [2025-07-13 19:02:53,566][__main__][INFO] - Max tokens: 1620
70
+ [2025-07-13 19:02:53,566][__main__][INFO] - Avg tokens: 1620.00
71
+ [2025-07-13 19:02:53,566][__main__][INFO] - Std tokens: 0.00
72
+ [2025-07-13 19:02:53,828][__main__][INFO] -
73
+ Token statistics for 'test' split:
74
+ [2025-07-13 19:02:53,828][__main__][INFO] - Total examples: 138
75
+ [2025-07-13 19:02:53,828][__main__][INFO] - Min tokens: 1673
76
+ [2025-07-13 19:02:53,828][__main__][INFO] - Max tokens: 1673
77
+ [2025-07-13 19:02:53,828][__main__][INFO] - Avg tokens: 1673.00
78
+ [2025-07-13 19:02:53,828][__main__][INFO] - Std tokens: 0.00
79
+ [2025-07-13 19:02:53,829][__main__][INFO] - If token statistics are the same (max, avg, min) keep in mind that this is due to batched tokenization and padding.
80
+ [2025-07-13 19:02:53,829][__main__][INFO] - Model max length: 4096. If it is the same as stats, then there is a high chance that sequences are being truncated.
81
+ [2025-07-13 19:02:53,829][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8
82
+ [2025-07-13 19:02:53,829][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8
83
+ [2025-07-13 19:02:54,562][__main__][INFO] - Model need ≈ 14.53 GiB to run inference and 42.09 for training
84
+ [2025-07-13 19:02:54,620][__main__][INFO] - Loading PEFT model configuration from kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8
85
+ [2025-07-13 19:02:54,620][__main__][INFO] - Base model name: TucanoBR/Tucano-2b4-Instruct
86
+ [2025-07-13 19:02:54,732][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--TucanoBR--Tucano-2b4-Instruct/snapshots/d763c3ed97909de3b664742dd955bf35d1cca620/config.json
87
+ [2025-07-13 19:02:54,734][transformers.configuration_utils][INFO] - Model config LlamaConfig {
88
+ "architectures": [
89
+ "LlamaForCausalLM"
90
+ ],
91
+ "attention_bias": false,
92
+ "attention_dropout": 0.0,
93
+ "bos_token_id": 1,
94
+ "eos_token_id": 2,
95
+ "head_dim": 160,
96
+ "hidden_act": "silu",
97
+ "hidden_size": 2560,
98
+ "id2label": {
99
+ "0": "LABEL_0",
100
+ "1": "LABEL_1",
101
+ "2": "LABEL_2",
102
+ "3": "LABEL_3",
103
+ "4": "LABEL_4",
104
+ "5": "LABEL_5"
105
+ },
106
+ "initializer_range": 0.02,
107
+ "intermediate_size": 10240,
108
+ "label2id": {
109
+ "LABEL_0": 0,
110
+ "LABEL_1": 1,
111
+ "LABEL_2": 2,
112
+ "LABEL_3": 3,
113
+ "LABEL_4": 4,
114
+ "LABEL_5": 5
115
+ },
116
+ "max_position_embeddings": 4096,
117
+ "mlp_bias": false,
118
+ "model_type": "llama",
119
+ "num_attention_heads": 16,
120
+ "num_hidden_layers": 24,
121
+ "num_key_value_heads": 4,
122
+ "pad_token_id": 3,
123
+ "pretraining_tp": 1,
124
+ "rms_norm_eps": 1e-05,
125
+ "rope_scaling": null,
126
+ "rope_theta": 10000.0,
127
+ "tie_word_embeddings": false,
128
+ "torch_dtype": "float32",
129
+ "transformers_version": "4.53.2",
130
+ "use_cache": false,
131
+ "vocab_size": 32002
132
+ }
133
+
134
+ [2025-07-13 19:02:55,093][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--TucanoBR--Tucano-2b4-Instruct/snapshots/d763c3ed97909de3b664742dd955bf35d1cca620/model.safetensors.index.json
135
+ [2025-07-13 19:02:58,720][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
136
+ [2025-07-13 19:02:58,720][transformers.modeling_utils][INFO] - Instantiating LlamaForSequenceClassification model under default dtype torch.float32.
137
+ [2025-07-13 19:02:58,721][transformers.modeling_utils][WARNING] - Flash Attention 2.0 only supports torch.float16 and torch.bfloat16 dtypes, but the current dype in LlamaForSequenceClassification is torch.float32. You should run training or inference using Automatic Mixed-Precision via the `with torch.autocast(device_type='torch_device'):` decorator, or load the model with the `torch_dtype` argument. Example: `model = AutoModel.from_pretrained("openai/whisper-tiny", attn_implementation="flash_attention_2", torch_dtype=torch.float16)`
138
+ [2025-07-13 19:03:00,188][transformers.modeling_utils][INFO] - Some weights of the model checkpoint at TucanoBR/Tucano-2b4-Instruct were not used when initializing LlamaForSequenceClassification: ['lm_head.weight']
139
+ - This IS expected if you are initializing LlamaForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
140
+ - This IS NOT expected if you are initializing LlamaForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
141
+ [2025-07-13 19:03:00,188][transformers.modeling_utils][WARNING] - Some weights of LlamaForSequenceClassification were not initialized from the model checkpoint at TucanoBR/Tucano-2b4-Instruct and are newly initialized: ['score.weight']
142
+ You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
143
+ [2025-07-13 19:03:01,711][__main__][INFO] - Loaded fine-tuned PEFT model from kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8
144
+ [2025-07-13 19:03:01,713][__main__][INFO] - None
145
+ [2025-07-13 19:03:01,726][transformers.training_args][INFO] - PyTorch: setting up devices
146
+ [2025-07-13 19:03:01,755][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
147
+ [2025-07-13 19:03:01,774][accelerate.utils.other][WARNING] - Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.
148
+ [2025-07-13 19:03:01,774][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
149
+ [2025-07-13 19:03:01,867][transformers.trainer][INFO] - Using auto half precision backend
150
+ [2025-07-13 19:03:01,868][transformers.trainer][WARNING] - No label_names provided for model class `PeftModelForSequenceClassification`. Since `PeftModel` hides base models input arguments, if label_names is not given, label_names can't be set automatically within `Trainer`. Note that empty label_names list will be used instead.
151
+ [2025-07-13 19:03:05,171][__main__][INFO] - Running inference on test dataset
152
+ [2025-07-13 19:03:05,173][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `PeftModelForSequenceClassification.forward` and have been ignored: essay_text, id_prompt, id, grades, essay_year, reference, supporting_text, prompt. If essay_text, id_prompt, id, grades, essay_year, reference, supporting_text, prompt are not expected by `PeftModelForSequenceClassification.forward`, you can safely ignore this message.
153
+ [2025-07-13 19:03:05,193][transformers.trainer][INFO] -
154
+ ***** Running Prediction *****
155
+ [2025-07-13 19:03:05,193][transformers.trainer][INFO] - Num examples = 138
156
+ [2025-07-13 19:03:05,193][transformers.trainer][INFO] - Batch size = 4
157
+ [2025-07-13 19:03:05,456][transformers.modeling_flash_attention_utils][WARNING] - The input hidden states seems to be silently casted in float32, this might be related to the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in torch.bfloat16.
158
+ [2025-07-13 19:03:25,314][__main__][INFO] - Inference results saved to jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-essay_only-r8-tucano_classification_lora-C1-essay_only-r8_inference_results.jsonl
159
+ [2025-07-13 19:03:25,327][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
160
+ [2025-07-13 19:05:11,669][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
161
+ [2025-07-13 19:05:11,669][__main__][INFO] - Bootstrap Confidence Intervals (95%):
162
+ [2025-07-13 19:05:11,669][__main__][INFO] - QWK: 0.6508 [0.5448, 0.7482]
163
+ [2025-07-13 19:05:11,669][__main__][INFO] - Macro_F1: 0.5022 [0.3836, 0.6558]
164
+ [2025-07-13 19:05:11,669][__main__][INFO] - Weighted_F1: 0.6419 [0.5608, 0.7199]
165
+ [2025-07-13 19:05:11,669][__main__][INFO] - Inference results: {'accuracy': 0.6376811594202898, 'RMSE': 27.240208984279956, 'QWK': 0.6531573986804902, 'HDIV': 0.007246376811594235, 'Macro_F1': 0.4658552631578948, 'Micro_F1': 0.6376811594202898, 'Weighted_F1': 0.641843058733791, 'TP_0': np.int64(0), 'TN_0': np.int64(137), 'FP_0': np.int64(0), 'FN_0': np.int64(1), 'TP_1': np.int64(0), 'TN_1': np.int64(138), 'FP_1': np.int64(0), 'FN_1': np.int64(0), 'TP_2': np.int64(6), 'TN_2': np.int64(120), 'FP_2': np.int64(8), 'FN_2': np.int64(4), 'TP_3': np.int64(46), 'TN_3': np.int64(56), 'FP_3': np.int64(16), 'FN_3': np.int64(20), 'TP_4': np.int64(29), 'TN_4': np.int64(72), 'FP_4': np.int64(15), 'FN_4': np.int64(22), 'TP_5': np.int64(7), 'TN_5': np.int64(117), 'FP_5': np.int64(11), 'FN_5': np.int64(3)}
166
+ [2025-07-13 19:05:11,669][__main__][INFO] - Inference experiment completed
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16-tucano_classification_lora-C1-full_context-r16/.hydra/config.yaml ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ cache_dir: /tmp/
2
+ dataset:
3
+ name: kamel-usp/aes_enem_dataset
4
+ split: JBCS2025
5
+ training_params:
6
+ seed: 42
7
+ num_train_epochs: 20
8
+ logging_steps: 100
9
+ metric_for_best_model: QWK
10
+ bf16: true
11
+ bootstrap:
12
+ enabled: true
13
+ n_bootstrap: 10000
14
+ bootstrap_seed: 42
15
+ metrics:
16
+ - QWK
17
+ - Macro_F1
18
+ - Weighted_F1
19
+ post_training_results:
20
+ model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
21
+ experiments:
22
+ model:
23
+ name: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16
24
+ type: tucano_classification_lora
25
+ num_labels: 6
26
+ output_dir: ./results/
27
+ logging_dir: ./logs/
28
+ best_model_dir: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16
29
+ lora_r: 16
30
+ lora_dropout: 0.1
31
+ lora_alpha: 32
32
+ lora_target_modules: all-linear
33
+ checkpoint_path: ''
34
+ tokenizer:
35
+ name: TucanoBR/Tucano-2b4-Instruct
36
+ dataset:
37
+ grade_index: 0
38
+ use_full_context: true
39
+ training_params:
40
+ weight_decay: 0.01
41
+ warmup_ratio: 0.1
42
+ learning_rate: 5.0e-05
43
+ train_batch_size: 8
44
+ eval_batch_size: 4
45
+ gradient_accumulation_steps: 2
46
+ gradient_checkpointing: true
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16-tucano_classification_lora-C1-full_context-r16/.hydra/hydra.yaml ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: inference_output/2025-07-13/19-10-18
4
+ sweep:
5
+ dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ simple:
72
+ format: '[%(asctime)s][HYDRA] %(message)s'
73
+ handlers:
74
+ console:
75
+ class: logging.StreamHandler
76
+ formatter: simple
77
+ stream: ext://sys.stdout
78
+ root:
79
+ level: INFO
80
+ handlers:
81
+ - console
82
+ loggers:
83
+ logging_example:
84
+ level: DEBUG
85
+ disable_existing_loggers: false
86
+ job_logging:
87
+ version: 1
88
+ formatters:
89
+ simple:
90
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
91
+ handlers:
92
+ console:
93
+ class: logging.StreamHandler
94
+ formatter: simple
95
+ stream: ext://sys.stdout
96
+ file:
97
+ class: logging.FileHandler
98
+ formatter: simple
99
+ filename: ${hydra.runtime.output_dir}/${hydra.job.name}.log
100
+ root:
101
+ level: INFO
102
+ handlers:
103
+ - console
104
+ - file
105
+ disable_existing_loggers: false
106
+ env: {}
107
+ mode: RUN
108
+ searchpath: []
109
+ callbacks: {}
110
+ output_subdir: .hydra
111
+ overrides:
112
+ hydra:
113
+ - hydra.run.dir=inference_output/2025-07-13/19-10-18
114
+ - hydra.mode=RUN
115
+ task:
116
+ - experiments=temp_inference/kamel-usp_jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16
117
+ job:
118
+ name: run_inference_experiment
119
+ chdir: null
120
+ override_dirname: experiments=temp_inference/kamel-usp_jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16
121
+ id: ???
122
+ num: ???
123
+ config_name: config
124
+ env_set: {}
125
+ env_copy: []
126
+ config:
127
+ override_dirname:
128
+ kv_sep: '='
129
+ item_sep: ','
130
+ exclude_keys: []
131
+ runtime:
132
+ version: 1.3.2
133
+ version_base: '1.1'
134
+ cwd: /workspace/jbcs2025
135
+ config_sources:
136
+ - path: hydra.conf
137
+ schema: pkg
138
+ provider: hydra
139
+ - path: /workspace/jbcs2025/configs
140
+ schema: file
141
+ provider: main
142
+ - path: ''
143
+ schema: structured
144
+ provider: schema
145
+ output_dir: /workspace/jbcs2025/inference_output/2025-07-13/19-10-18
146
+ choices:
147
+ experiments: temp_inference/kamel-usp_jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16
148
+ hydra/env: default
149
+ hydra/callbacks: null
150
+ hydra/job_logging: default
151
+ hydra/hydra_logging: default
152
+ hydra/hydra_help: default
153
+ hydra/help: default
154
+ hydra/sweeper: basic
155
+ hydra/launcher: basic
156
+ hydra/output: default
157
+ verbose: false
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16-tucano_classification_lora-C1-full_context-r16/.hydra/overrides.yaml ADDED
@@ -0,0 +1 @@
 
 
1
+ - experiments=temp_inference/kamel-usp_jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16-tucano_classification_lora-C1-full_context-r16/bootstrap_confidence_intervals.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
+ jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16-tucano_classification_lora-C1-full_context-r16,2025-07-13 19:10:23,0.5374147344079784,0.42826449121883836,0.6486915411102406,0.22042704989140227,0.39899885708948146,0.3116464511412663,0.5077752976328532,0.1961288464915869,0.5897030082205146,0.5029569255639786,0.6727103842494871,0.1697534586855085
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16-tucano_classification_lora-C1-full_context-r16/evaluation_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
+ 0.5942028985507246,31.576913232223355,0.5379943942696979,0.021739130434782594,0.3995024077046549,0.5942028985507246,0.589919045292763,0,135,2,1,0,138,0,0,7,117,11,3,48,46,26,18,25,74,13,26,2,124,4,8,2025-07-13 19:10:23,jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16-tucano_classification_lora-C1-full_context-r16
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16-tucano_classification_lora-C1-full_context-r16/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16-tucano_classification_lora-C1-full_context-r16_inference_results.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16-tucano_classification_lora-C1-full_context-r16/run_inference_experiment.log ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2025-07-13 19:10:23,944][__main__][INFO] - Starting inference experiment
2
+ [2025-07-13 19:10:23,946][__main__][INFO] - cache_dir: /tmp/
3
+ dataset:
4
+ name: kamel-usp/aes_enem_dataset
5
+ split: JBCS2025
6
+ training_params:
7
+ seed: 42
8
+ num_train_epochs: 20
9
+ logging_steps: 100
10
+ metric_for_best_model: QWK
11
+ bf16: true
12
+ bootstrap:
13
+ enabled: true
14
+ n_bootstrap: 10000
15
+ bootstrap_seed: 42
16
+ metrics:
17
+ - QWK
18
+ - Macro_F1
19
+ - Weighted_F1
20
+ post_training_results:
21
+ model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
22
+ experiments:
23
+ model:
24
+ name: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16
25
+ type: tucano_classification_lora
26
+ num_labels: 6
27
+ output_dir: ./results/
28
+ logging_dir: ./logs/
29
+ best_model_dir: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16
30
+ lora_r: 16
31
+ lora_dropout: 0.1
32
+ lora_alpha: 32
33
+ lora_target_modules: all-linear
34
+ checkpoint_path: ''
35
+ tokenizer:
36
+ name: TucanoBR/Tucano-2b4-Instruct
37
+ dataset:
38
+ grade_index: 0
39
+ use_full_context: true
40
+ training_params:
41
+ weight_decay: 0.01
42
+ warmup_ratio: 0.1
43
+ learning_rate: 5.0e-05
44
+ train_batch_size: 8
45
+ eval_batch_size: 4
46
+ gradient_accumulation_steps: 2
47
+ gradient_checkpointing: true
48
+
49
+ [2025-07-13 19:10:23,948][__main__][INFO] - Running inference with fine-tuned HF model
50
+ [2025-07-13 19:10:25,230][transformers.tokenization_utils_base][INFO] - loading file tokenizer.model from cache at None
51
+ [2025-07-13 19:10:25,230][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at /tmp/models--TucanoBR--Tucano-2b4-Instruct/snapshots/d763c3ed97909de3b664742dd955bf35d1cca620/tokenizer.json
52
+ [2025-07-13 19:10:25,230][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at None
53
+ [2025-07-13 19:10:25,230][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--TucanoBR--Tucano-2b4-Instruct/snapshots/d763c3ed97909de3b664742dd955bf35d1cca620/special_tokens_map.json
54
+ [2025-07-13 19:10:25,230][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--TucanoBR--Tucano-2b4-Instruct/snapshots/d763c3ed97909de3b664742dd955bf35d1cca620/tokenizer_config.json
55
+ [2025-07-13 19:10:25,230][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
56
+ [2025-07-13 19:10:25,278][transformers.tokenization_utils_base][INFO] - Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
57
+ [2025-07-13 19:10:25,286][__main__][INFO] - Tokenizer function parameters- Padding:longest; Truncation: False; Use Full Context: True
58
+ [2025-07-13 19:10:27,036][__main__][INFO] -
59
+ Token statistics for 'train' split:
60
+ [2025-07-13 19:10:27,036][__main__][INFO] - Total examples: 500
61
+ [2025-07-13 19:10:27,036][__main__][INFO] - Min tokens: 2685
62
+ [2025-07-13 19:10:27,037][__main__][INFO] - Max tokens: 2685
63
+ [2025-07-13 19:10:27,037][__main__][INFO] - Avg tokens: 2685.00
64
+ [2025-07-13 19:10:27,037][__main__][INFO] - Std tokens: 0.00
65
+ [2025-07-13 19:10:27,461][__main__][INFO] -
66
+ Token statistics for 'validation' split:
67
+ [2025-07-13 19:10:27,461][__main__][INFO] - Total examples: 132
68
+ [2025-07-13 19:10:27,461][__main__][INFO] - Min tokens: 2887
69
+ [2025-07-13 19:10:27,461][__main__][INFO] - Max tokens: 2887
70
+ [2025-07-13 19:10:27,461][__main__][INFO] - Avg tokens: 2887.00
71
+ [2025-07-13 19:10:27,461][__main__][INFO] - Std tokens: 0.00
72
+ [2025-07-13 19:10:27,912][__main__][INFO] -
73
+ Token statistics for 'test' split:
74
+ [2025-07-13 19:10:27,912][__main__][INFO] - Total examples: 138
75
+ [2025-07-13 19:10:27,912][__main__][INFO] - Min tokens: 2910
76
+ [2025-07-13 19:10:27,912][__main__][INFO] - Max tokens: 2910
77
+ [2025-07-13 19:10:27,912][__main__][INFO] - Avg tokens: 2910.00
78
+ [2025-07-13 19:10:27,912][__main__][INFO] - Std tokens: 0.00
79
+ [2025-07-13 19:10:27,912][__main__][INFO] - If token statistics are the same (max, avg, min) keep in mind that this is due to batched tokenization and padding.
80
+ [2025-07-13 19:10:27,912][__main__][INFO] - Model max length: 4096. If it is the same as stats, then there is a high chance that sequences are being truncated.
81
+ [2025-07-13 19:10:27,912][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16
82
+ [2025-07-13 19:10:27,912][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16
83
+ [2025-07-13 19:10:28,832][__main__][INFO] - Model need ≈ 14.65 GiB to run inference and 42.44 for training
84
+ [2025-07-13 19:10:28,916][__main__][INFO] - Loading PEFT model configuration from kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16
85
+ [2025-07-13 19:10:28,916][__main__][INFO] - Base model name: TucanoBR/Tucano-2b4-Instruct
86
+ [2025-07-13 19:10:28,953][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--TucanoBR--Tucano-2b4-Instruct/snapshots/d763c3ed97909de3b664742dd955bf35d1cca620/config.json
87
+ [2025-07-13 19:10:28,955][transformers.configuration_utils][INFO] - Model config LlamaConfig {
88
+ "architectures": [
89
+ "LlamaForCausalLM"
90
+ ],
91
+ "attention_bias": false,
92
+ "attention_dropout": 0.0,
93
+ "bos_token_id": 1,
94
+ "eos_token_id": 2,
95
+ "head_dim": 160,
96
+ "hidden_act": "silu",
97
+ "hidden_size": 2560,
98
+ "id2label": {
99
+ "0": "LABEL_0",
100
+ "1": "LABEL_1",
101
+ "2": "LABEL_2",
102
+ "3": "LABEL_3",
103
+ "4": "LABEL_4",
104
+ "5": "LABEL_5"
105
+ },
106
+ "initializer_range": 0.02,
107
+ "intermediate_size": 10240,
108
+ "label2id": {
109
+ "LABEL_0": 0,
110
+ "LABEL_1": 1,
111
+ "LABEL_2": 2,
112
+ "LABEL_3": 3,
113
+ "LABEL_4": 4,
114
+ "LABEL_5": 5
115
+ },
116
+ "max_position_embeddings": 4096,
117
+ "mlp_bias": false,
118
+ "model_type": "llama",
119
+ "num_attention_heads": 16,
120
+ "num_hidden_layers": 24,
121
+ "num_key_value_heads": 4,
122
+ "pad_token_id": 3,
123
+ "pretraining_tp": 1,
124
+ "rms_norm_eps": 1e-05,
125
+ "rope_scaling": null,
126
+ "rope_theta": 10000.0,
127
+ "tie_word_embeddings": false,
128
+ "torch_dtype": "float32",
129
+ "transformers_version": "4.53.2",
130
+ "use_cache": false,
131
+ "vocab_size": 32002
132
+ }
133
+
134
+ [2025-07-13 19:10:29,115][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--TucanoBR--Tucano-2b4-Instruct/snapshots/d763c3ed97909de3b664742dd955bf35d1cca620/model.safetensors.index.json
135
+ [2025-07-13 19:10:29,115][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
136
+ [2025-07-13 19:10:29,115][transformers.modeling_utils][INFO] - Instantiating LlamaForSequenceClassification model under default dtype torch.float32.
137
+ [2025-07-13 19:10:29,117][transformers.modeling_utils][WARNING] - Flash Attention 2.0 only supports torch.float16 and torch.bfloat16 dtypes, but the current dype in LlamaForSequenceClassification is torch.float32. You should run training or inference using Automatic Mixed-Precision via the `with torch.autocast(device_type='torch_device'):` decorator, or load the model with the `torch_dtype` argument. Example: `model = AutoModel.from_pretrained("openai/whisper-tiny", attn_implementation="flash_attention_2", torch_dtype=torch.float16)`
138
+ [2025-07-13 19:10:30,587][transformers.modeling_utils][INFO] - Some weights of the model checkpoint at TucanoBR/Tucano-2b4-Instruct were not used when initializing LlamaForSequenceClassification: ['lm_head.weight']
139
+ - This IS expected if you are initializing LlamaForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
140
+ - This IS NOT expected if you are initializing LlamaForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
141
+ [2025-07-13 19:10:30,587][transformers.modeling_utils][WARNING] - Some weights of LlamaForSequenceClassification were not initialized from the model checkpoint at TucanoBR/Tucano-2b4-Instruct and are newly initialized: ['score.weight']
142
+ You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
143
+ [2025-07-13 19:10:32,995][__main__][INFO] - Loaded fine-tuned PEFT model from kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16
144
+ [2025-07-13 19:10:32,997][__main__][INFO] - None
145
+ [2025-07-13 19:10:33,010][transformers.training_args][INFO] - PyTorch: setting up devices
146
+ [2025-07-13 19:10:33,035][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
147
+ [2025-07-13 19:10:33,044][accelerate.utils.other][WARNING] - Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.
148
+ [2025-07-13 19:10:33,044][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
149
+ [2025-07-13 19:10:33,067][transformers.trainer][INFO] - Using auto half precision backend
150
+ [2025-07-13 19:10:33,067][transformers.trainer][WARNING] - No label_names provided for model class `PeftModelForSequenceClassification`. Since `PeftModel` hides base models input arguments, if label_names is not given, label_names can't be set automatically within `Trainer`. Note that empty label_names list will be used instead.
151
+ [2025-07-13 19:10:36,364][__main__][INFO] - Running inference on test dataset
152
+ [2025-07-13 19:10:36,366][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `PeftModelForSequenceClassification.forward` and have been ignored: id, id_prompt, prompt, essay_text, essay_year, supporting_text, reference, grades. If id, id_prompt, prompt, essay_text, essay_year, supporting_text, reference, grades are not expected by `PeftModelForSequenceClassification.forward`, you can safely ignore this message.
153
+ [2025-07-13 19:10:36,386][transformers.trainer][INFO] -
154
+ ***** Running Prediction *****
155
+ [2025-07-13 19:10:36,386][transformers.trainer][INFO] - Num examples = 138
156
+ [2025-07-13 19:10:36,386][transformers.trainer][INFO] - Batch size = 4
157
+ [2025-07-13 19:10:36,657][transformers.modeling_flash_attention_utils][WARNING] - The input hidden states seems to be silently casted in float32, this might be related to the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in torch.bfloat16.
158
+ [2025-07-13 19:11:10,065][__main__][INFO] - Inference results saved to jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r16-tucano_classification_lora-C1-full_context-r16_inference_results.jsonl
159
+ [2025-07-13 19:11:10,071][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
160
+ [2025-07-13 19:12:55,261][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
161
+ [2025-07-13 19:12:55,261][__main__][INFO] - Bootstrap Confidence Intervals (95%):
162
+ [2025-07-13 19:12:55,261][__main__][INFO] - QWK: 0.5374 [0.4283, 0.6487]
163
+ [2025-07-13 19:12:55,261][__main__][INFO] - Macro_F1: 0.3990 [0.3116, 0.5078]
164
+ [2025-07-13 19:12:55,261][__main__][INFO] - Weighted_F1: 0.5897 [0.5030, 0.6727]
165
+ [2025-07-13 19:12:55,261][__main__][INFO] - Inference results: {'accuracy': 0.5942028985507246, 'RMSE': 31.576913232223355, 'QWK': 0.5379943942696979, 'HDIV': 0.021739130434782594, 'Macro_F1': 0.3995024077046549, 'Micro_F1': 0.5942028985507246, 'Weighted_F1': 0.589919045292763, 'TP_0': np.int64(0), 'TN_0': np.int64(135), 'FP_0': np.int64(2), 'FN_0': np.int64(1), 'TP_1': np.int64(0), 'TN_1': np.int64(138), 'FP_1': np.int64(0), 'FN_1': np.int64(0), 'TP_2': np.int64(7), 'TN_2': np.int64(117), 'FP_2': np.int64(11), 'FN_2': np.int64(3), 'TP_3': np.int64(48), 'TN_3': np.int64(46), 'FP_3': np.int64(26), 'FN_3': np.int64(18), 'TP_4': np.int64(25), 'TN_4': np.int64(74), 'FP_4': np.int64(13), 'FN_4': np.int64(26), 'TP_5': np.int64(2), 'TN_5': np.int64(124), 'FP_5': np.int64(4), 'FN_5': np.int64(8)}
166
+ [2025-07-13 19:12:55,261][__main__][INFO] - Inference experiment completed
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8-tucano_classification_lora-C1-full_context-r8/.hydra/config.yaml ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ cache_dir: /tmp/
2
+ dataset:
3
+ name: kamel-usp/aes_enem_dataset
4
+ split: JBCS2025
5
+ training_params:
6
+ seed: 42
7
+ num_train_epochs: 20
8
+ logging_steps: 100
9
+ metric_for_best_model: QWK
10
+ bf16: true
11
+ bootstrap:
12
+ enabled: true
13
+ n_bootstrap: 10000
14
+ bootstrap_seed: 42
15
+ metrics:
16
+ - QWK
17
+ - Macro_F1
18
+ - Weighted_F1
19
+ post_training_results:
20
+ model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
21
+ experiments:
22
+ model:
23
+ name: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8
24
+ type: tucano_classification_lora
25
+ num_labels: 6
26
+ output_dir: ./results/
27
+ logging_dir: ./logs/
28
+ best_model_dir: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8
29
+ lora_r: 8
30
+ lora_dropout: 0.05
31
+ lora_alpha: 16
32
+ lora_target_modules: all-linear
33
+ checkpoint_path: ''
34
+ tokenizer:
35
+ name: TucanoBR/Tucano-2b4-Instruct
36
+ dataset:
37
+ grade_index: 0
38
+ use_full_context: true
39
+ training_params:
40
+ weight_decay: 0.01
41
+ warmup_ratio: 0.1
42
+ learning_rate: 5.0e-05
43
+ train_batch_size: 8
44
+ eval_batch_size: 4
45
+ gradient_accumulation_steps: 2
46
+ gradient_checkpointing: true
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8-tucano_classification_lora-C1-full_context-r8/.hydra/hydra.yaml ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: inference_output/2025-07-13/19-07-39
4
+ sweep:
5
+ dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ simple:
72
+ format: '[%(asctime)s][HYDRA] %(message)s'
73
+ handlers:
74
+ console:
75
+ class: logging.StreamHandler
76
+ formatter: simple
77
+ stream: ext://sys.stdout
78
+ root:
79
+ level: INFO
80
+ handlers:
81
+ - console
82
+ loggers:
83
+ logging_example:
84
+ level: DEBUG
85
+ disable_existing_loggers: false
86
+ job_logging:
87
+ version: 1
88
+ formatters:
89
+ simple:
90
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
91
+ handlers:
92
+ console:
93
+ class: logging.StreamHandler
94
+ formatter: simple
95
+ stream: ext://sys.stdout
96
+ file:
97
+ class: logging.FileHandler
98
+ formatter: simple
99
+ filename: ${hydra.runtime.output_dir}/${hydra.job.name}.log
100
+ root:
101
+ level: INFO
102
+ handlers:
103
+ - console
104
+ - file
105
+ disable_existing_loggers: false
106
+ env: {}
107
+ mode: RUN
108
+ searchpath: []
109
+ callbacks: {}
110
+ output_subdir: .hydra
111
+ overrides:
112
+ hydra:
113
+ - hydra.run.dir=inference_output/2025-07-13/19-07-39
114
+ - hydra.mode=RUN
115
+ task:
116
+ - experiments=temp_inference/kamel-usp_jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8
117
+ job:
118
+ name: run_inference_experiment
119
+ chdir: null
120
+ override_dirname: experiments=temp_inference/kamel-usp_jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8
121
+ id: ???
122
+ num: ???
123
+ config_name: config
124
+ env_set: {}
125
+ env_copy: []
126
+ config:
127
+ override_dirname:
128
+ kv_sep: '='
129
+ item_sep: ','
130
+ exclude_keys: []
131
+ runtime:
132
+ version: 1.3.2
133
+ version_base: '1.1'
134
+ cwd: /workspace/jbcs2025
135
+ config_sources:
136
+ - path: hydra.conf
137
+ schema: pkg
138
+ provider: hydra
139
+ - path: /workspace/jbcs2025/configs
140
+ schema: file
141
+ provider: main
142
+ - path: ''
143
+ schema: structured
144
+ provider: schema
145
+ output_dir: /workspace/jbcs2025/inference_output/2025-07-13/19-07-39
146
+ choices:
147
+ experiments: temp_inference/kamel-usp_jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8
148
+ hydra/env: default
149
+ hydra/callbacks: null
150
+ hydra/job_logging: default
151
+ hydra/hydra_logging: default
152
+ hydra/hydra_help: default
153
+ hydra/help: default
154
+ hydra/sweeper: basic
155
+ hydra/launcher: basic
156
+ hydra/output: default
157
+ verbose: false
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8-tucano_classification_lora-C1-full_context-r8/.hydra/overrides.yaml ADDED
@@ -0,0 +1 @@
 
 
1
+ - experiments=temp_inference/kamel-usp_jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8-tucano_classification_lora-C1-full_context-r8/bootstrap_confidence_intervals.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
+ jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8-tucano_classification_lora-C1-full_context-r8,2025-07-13 19:07:44,0.5629665177856308,0.45023226528655275,0.6661682802919398,0.215936015005387,0.4127433561801439,0.30884451396084633,0.5475081624419281,0.2386636484810818,0.558846735395311,0.4730360557696718,0.6439182617161876,0.17088220594651582
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8-tucano_classification_lora-C1-full_context-r8/evaluation_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
+ 0.5579710144927537,31.20757990421976,0.5655172413793104,0.007246376811594235,0.3825386450876646,0.5579710144927537,0.5584592935402825,0,137,0,1,0,138,0,0,7,115,13,3,47,49,23,19,19,76,11,32,4,114,14,6,2025-07-13 19:07:44,jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8-tucano_classification_lora-C1-full_context-r8
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8-tucano_classification_lora-C1-full_context-r8/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8-tucano_classification_lora-C1-full_context-r8_inference_results.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8-tucano_classification_lora-C1-full_context-r8/run_inference_experiment.log ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2025-07-13 19:07:44,364][__main__][INFO] - Starting inference experiment
2
+ [2025-07-13 19:07:44,366][__main__][INFO] - cache_dir: /tmp/
3
+ dataset:
4
+ name: kamel-usp/aes_enem_dataset
5
+ split: JBCS2025
6
+ training_params:
7
+ seed: 42
8
+ num_train_epochs: 20
9
+ logging_steps: 100
10
+ metric_for_best_model: QWK
11
+ bf16: true
12
+ bootstrap:
13
+ enabled: true
14
+ n_bootstrap: 10000
15
+ bootstrap_seed: 42
16
+ metrics:
17
+ - QWK
18
+ - Macro_F1
19
+ - Weighted_F1
20
+ post_training_results:
21
+ model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
22
+ experiments:
23
+ model:
24
+ name: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8
25
+ type: tucano_classification_lora
26
+ num_labels: 6
27
+ output_dir: ./results/
28
+ logging_dir: ./logs/
29
+ best_model_dir: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8
30
+ lora_r: 8
31
+ lora_dropout: 0.05
32
+ lora_alpha: 16
33
+ lora_target_modules: all-linear
34
+ checkpoint_path: ''
35
+ tokenizer:
36
+ name: TucanoBR/Tucano-2b4-Instruct
37
+ dataset:
38
+ grade_index: 0
39
+ use_full_context: true
40
+ training_params:
41
+ weight_decay: 0.01
42
+ warmup_ratio: 0.1
43
+ learning_rate: 5.0e-05
44
+ train_batch_size: 8
45
+ eval_batch_size: 4
46
+ gradient_accumulation_steps: 2
47
+ gradient_checkpointing: true
48
+
49
+ [2025-07-13 19:07:44,368][__main__][INFO] - Running inference with fine-tuned HF model
50
+ [2025-07-13 19:07:45,523][transformers.tokenization_utils_base][INFO] - loading file tokenizer.model from cache at None
51
+ [2025-07-13 19:07:45,523][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at /tmp/models--TucanoBR--Tucano-2b4-Instruct/snapshots/d763c3ed97909de3b664742dd955bf35d1cca620/tokenizer.json
52
+ [2025-07-13 19:07:45,523][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at None
53
+ [2025-07-13 19:07:45,523][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--TucanoBR--Tucano-2b4-Instruct/snapshots/d763c3ed97909de3b664742dd955bf35d1cca620/special_tokens_map.json
54
+ [2025-07-13 19:07:45,523][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--TucanoBR--Tucano-2b4-Instruct/snapshots/d763c3ed97909de3b664742dd955bf35d1cca620/tokenizer_config.json
55
+ [2025-07-13 19:07:45,523][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
56
+ [2025-07-13 19:07:45,573][transformers.tokenization_utils_base][INFO] - Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
57
+ [2025-07-13 19:07:45,581][__main__][INFO] - Tokenizer function parameters- Padding:longest; Truncation: False; Use Full Context: True
58
+ [2025-07-13 19:07:48,329][__main__][INFO] -
59
+ Token statistics for 'train' split:
60
+ [2025-07-13 19:07:48,329][__main__][INFO] - Total examples: 500
61
+ [2025-07-13 19:07:48,329][__main__][INFO] - Min tokens: 2685
62
+ [2025-07-13 19:07:48,329][__main__][INFO] - Max tokens: 2685
63
+ [2025-07-13 19:07:48,329][__main__][INFO] - Avg tokens: 2685.00
64
+ [2025-07-13 19:07:48,329][__main__][INFO] - Std tokens: 0.00
65
+ [2025-07-13 19:07:48,751][__main__][INFO] -
66
+ Token statistics for 'validation' split:
67
+ [2025-07-13 19:07:48,752][__main__][INFO] - Total examples: 132
68
+ [2025-07-13 19:07:48,752][__main__][INFO] - Min tokens: 2887
69
+ [2025-07-13 19:07:48,752][__main__][INFO] - Max tokens: 2887
70
+ [2025-07-13 19:07:48,752][__main__][INFO] - Avg tokens: 2887.00
71
+ [2025-07-13 19:07:48,752][__main__][INFO] - Std tokens: 0.00
72
+ [2025-07-13 19:07:49,195][__main__][INFO] -
73
+ Token statistics for 'test' split:
74
+ [2025-07-13 19:07:49,195][__main__][INFO] - Total examples: 138
75
+ [2025-07-13 19:07:49,195][__main__][INFO] - Min tokens: 2910
76
+ [2025-07-13 19:07:49,195][__main__][INFO] - Max tokens: 2910
77
+ [2025-07-13 19:07:49,195][__main__][INFO] - Avg tokens: 2910.00
78
+ [2025-07-13 19:07:49,195][__main__][INFO] - Std tokens: 0.00
79
+ [2025-07-13 19:07:49,195][__main__][INFO] - If token statistics are the same (max, avg, min) keep in mind that this is due to batched tokenization and padding.
80
+ [2025-07-13 19:07:49,195][__main__][INFO] - Model max length: 4096. If it is the same as stats, then there is a high chance that sequences are being truncated.
81
+ [2025-07-13 19:07:49,196][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8
82
+ [2025-07-13 19:07:49,196][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8
83
+ [2025-07-13 19:07:50,228][__main__][INFO] - Model need ≈ 14.53 GiB to run inference and 42.09 for training
84
+ [2025-07-13 19:07:50,286][__main__][INFO] - Loading PEFT model configuration from kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8
85
+ [2025-07-13 19:07:50,286][__main__][INFO] - Base model name: TucanoBR/Tucano-2b4-Instruct
86
+ [2025-07-13 19:07:50,328][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--TucanoBR--Tucano-2b4-Instruct/snapshots/d763c3ed97909de3b664742dd955bf35d1cca620/config.json
87
+ [2025-07-13 19:07:50,330][transformers.configuration_utils][INFO] - Model config LlamaConfig {
88
+ "architectures": [
89
+ "LlamaForCausalLM"
90
+ ],
91
+ "attention_bias": false,
92
+ "attention_dropout": 0.0,
93
+ "bos_token_id": 1,
94
+ "eos_token_id": 2,
95
+ "head_dim": 160,
96
+ "hidden_act": "silu",
97
+ "hidden_size": 2560,
98
+ "id2label": {
99
+ "0": "LABEL_0",
100
+ "1": "LABEL_1",
101
+ "2": "LABEL_2",
102
+ "3": "LABEL_3",
103
+ "4": "LABEL_4",
104
+ "5": "LABEL_5"
105
+ },
106
+ "initializer_range": 0.02,
107
+ "intermediate_size": 10240,
108
+ "label2id": {
109
+ "LABEL_0": 0,
110
+ "LABEL_1": 1,
111
+ "LABEL_2": 2,
112
+ "LABEL_3": 3,
113
+ "LABEL_4": 4,
114
+ "LABEL_5": 5
115
+ },
116
+ "max_position_embeddings": 4096,
117
+ "mlp_bias": false,
118
+ "model_type": "llama",
119
+ "num_attention_heads": 16,
120
+ "num_hidden_layers": 24,
121
+ "num_key_value_heads": 4,
122
+ "pad_token_id": 3,
123
+ "pretraining_tp": 1,
124
+ "rms_norm_eps": 1e-05,
125
+ "rope_scaling": null,
126
+ "rope_theta": 10000.0,
127
+ "tie_word_embeddings": false,
128
+ "torch_dtype": "float32",
129
+ "transformers_version": "4.53.2",
130
+ "use_cache": false,
131
+ "vocab_size": 32002
132
+ }
133
+
134
+ [2025-07-13 19:07:50,493][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--TucanoBR--Tucano-2b4-Instruct/snapshots/d763c3ed97909de3b664742dd955bf35d1cca620/model.safetensors.index.json
135
+ [2025-07-13 19:07:50,493][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
136
+ [2025-07-13 19:07:50,494][transformers.modeling_utils][INFO] - Instantiating LlamaForSequenceClassification model under default dtype torch.float32.
137
+ [2025-07-13 19:07:50,495][transformers.modeling_utils][WARNING] - Flash Attention 2.0 only supports torch.float16 and torch.bfloat16 dtypes, but the current dype in LlamaForSequenceClassification is torch.float32. You should run training or inference using Automatic Mixed-Precision via the `with torch.autocast(device_type='torch_device'):` decorator, or load the model with the `torch_dtype` argument. Example: `model = AutoModel.from_pretrained("openai/whisper-tiny", attn_implementation="flash_attention_2", torch_dtype=torch.float16)`
138
+ [2025-07-13 19:07:51,961][transformers.modeling_utils][INFO] - Some weights of the model checkpoint at TucanoBR/Tucano-2b4-Instruct were not used when initializing LlamaForSequenceClassification: ['lm_head.weight']
139
+ - This IS expected if you are initializing LlamaForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
140
+ - This IS NOT expected if you are initializing LlamaForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
141
+ [2025-07-13 19:07:51,961][transformers.modeling_utils][WARNING] - Some weights of LlamaForSequenceClassification were not initialized from the model checkpoint at TucanoBR/Tucano-2b4-Instruct and are newly initialized: ['score.weight']
142
+ You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
143
+ [2025-07-13 19:07:53,447][__main__][INFO] - Loaded fine-tuned PEFT model from kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8
144
+ [2025-07-13 19:07:53,449][__main__][INFO] - None
145
+ [2025-07-13 19:07:53,462][transformers.training_args][INFO] - PyTorch: setting up devices
146
+ [2025-07-13 19:07:53,500][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
147
+ [2025-07-13 19:07:53,510][accelerate.utils.other][WARNING] - Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.
148
+ [2025-07-13 19:07:53,510][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
149
+ [2025-07-13 19:07:53,533][transformers.trainer][INFO] - Using auto half precision backend
150
+ [2025-07-13 19:07:53,533][transformers.trainer][WARNING] - No label_names provided for model class `PeftModelForSequenceClassification`. Since `PeftModel` hides base models input arguments, if label_names is not given, label_names can't be set automatically within `Trainer`. Note that empty label_names list will be used instead.
151
+ [2025-07-13 19:07:56,900][__main__][INFO] - Running inference on test dataset
152
+ [2025-07-13 19:07:56,902][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `PeftModelForSequenceClassification.forward` and have been ignored: prompt, id_prompt, grades, supporting_text, reference, essay_text, essay_year, id. If prompt, id_prompt, grades, supporting_text, reference, essay_text, essay_year, id are not expected by `PeftModelForSequenceClassification.forward`, you can safely ignore this message.
153
+ [2025-07-13 19:07:56,922][transformers.trainer][INFO] -
154
+ ***** Running Prediction *****
155
+ [2025-07-13 19:07:56,922][transformers.trainer][INFO] - Num examples = 138
156
+ [2025-07-13 19:07:56,922][transformers.trainer][INFO] - Batch size = 4
157
+ [2025-07-13 19:07:57,205][transformers.modeling_flash_attention_utils][WARNING] - The input hidden states seems to be silently casted in float32, this might be related to the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in torch.bfloat16.
158
+ [2025-07-13 19:08:30,602][__main__][INFO] - Inference results saved to jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C1-full_context-r8-tucano_classification_lora-C1-full_context-r8_inference_results.jsonl
159
+ [2025-07-13 19:08:30,607][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
160
+ [2025-07-13 19:10:15,450][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
161
+ [2025-07-13 19:10:15,451][__main__][INFO] - Bootstrap Confidence Intervals (95%):
162
+ [2025-07-13 19:10:15,451][__main__][INFO] - QWK: 0.5630 [0.4502, 0.6662]
163
+ [2025-07-13 19:10:15,451][__main__][INFO] - Macro_F1: 0.4127 [0.3088, 0.5475]
164
+ [2025-07-13 19:10:15,451][__main__][INFO] - Weighted_F1: 0.5588 [0.4730, 0.6439]
165
+ [2025-07-13 19:10:15,451][__main__][INFO] - Inference results: {'accuracy': 0.5579710144927537, 'RMSE': 31.20757990421976, 'QWK': 0.5655172413793104, 'HDIV': 0.007246376811594235, 'Macro_F1': 0.3825386450876646, 'Micro_F1': 0.5579710144927537, 'Weighted_F1': 0.5584592935402825, 'TP_0': np.int64(0), 'TN_0': np.int64(137), 'FP_0': np.int64(0), 'FN_0': np.int64(1), 'TP_1': np.int64(0), 'TN_1': np.int64(138), 'FP_1': np.int64(0), 'FN_1': np.int64(0), 'TP_2': np.int64(7), 'TN_2': np.int64(115), 'FP_2': np.int64(13), 'FN_2': np.int64(3), 'TP_3': np.int64(47), 'TN_3': np.int64(49), 'FP_3': np.int64(23), 'FN_3': np.int64(19), 'TP_4': np.int64(19), 'TN_4': np.int64(76), 'FP_4': np.int64(11), 'FN_4': np.int64(32), 'TP_5': np.int64(4), 'TN_5': np.int64(114), 'FP_5': np.int64(14), 'FN_5': np.int64(6)}
166
+ [2025-07-13 19:10:15,451][__main__][INFO] - Inference experiment completed
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16-tucano_classification_lora-C2-essay_only-r16/.hydra/config.yaml ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ cache_dir: /tmp/
2
+ dataset:
3
+ name: kamel-usp/aes_enem_dataset
4
+ split: JBCS2025
5
+ training_params:
6
+ seed: 42
7
+ num_train_epochs: 20
8
+ logging_steps: 100
9
+ metric_for_best_model: QWK
10
+ bf16: true
11
+ bootstrap:
12
+ enabled: true
13
+ n_bootstrap: 10000
14
+ bootstrap_seed: 42
15
+ metrics:
16
+ - QWK
17
+ - Macro_F1
18
+ - Weighted_F1
19
+ post_training_results:
20
+ model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
21
+ experiments:
22
+ model:
23
+ name: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16
24
+ type: tucano_classification_lora
25
+ num_labels: 6
26
+ output_dir: ./results/
27
+ logging_dir: ./logs/
28
+ best_model_dir: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16
29
+ lora_r: 16
30
+ lora_dropout: 0.1
31
+ lora_alpha: 32
32
+ lora_target_modules: all-linear
33
+ checkpoint_path: ''
34
+ tokenizer:
35
+ name: TucanoBR/Tucano-2b4-Instruct
36
+ dataset:
37
+ grade_index: 1
38
+ use_full_context: false
39
+ training_params:
40
+ weight_decay: 0.01
41
+ warmup_ratio: 0.1
42
+ learning_rate: 5.0e-05
43
+ train_batch_size: 8
44
+ eval_batch_size: 4
45
+ gradient_accumulation_steps: 2
46
+ gradient_checkpointing: true
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16-tucano_classification_lora-C2-essay_only-r16/.hydra/hydra.yaml ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: inference_output/2025-07-13/19-15-36
4
+ sweep:
5
+ dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ simple:
72
+ format: '[%(asctime)s][HYDRA] %(message)s'
73
+ handlers:
74
+ console:
75
+ class: logging.StreamHandler
76
+ formatter: simple
77
+ stream: ext://sys.stdout
78
+ root:
79
+ level: INFO
80
+ handlers:
81
+ - console
82
+ loggers:
83
+ logging_example:
84
+ level: DEBUG
85
+ disable_existing_loggers: false
86
+ job_logging:
87
+ version: 1
88
+ formatters:
89
+ simple:
90
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
91
+ handlers:
92
+ console:
93
+ class: logging.StreamHandler
94
+ formatter: simple
95
+ stream: ext://sys.stdout
96
+ file:
97
+ class: logging.FileHandler
98
+ formatter: simple
99
+ filename: ${hydra.runtime.output_dir}/${hydra.job.name}.log
100
+ root:
101
+ level: INFO
102
+ handlers:
103
+ - console
104
+ - file
105
+ disable_existing_loggers: false
106
+ env: {}
107
+ mode: RUN
108
+ searchpath: []
109
+ callbacks: {}
110
+ output_subdir: .hydra
111
+ overrides:
112
+ hydra:
113
+ - hydra.run.dir=inference_output/2025-07-13/19-15-36
114
+ - hydra.mode=RUN
115
+ task:
116
+ - experiments=temp_inference/kamel-usp_jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16
117
+ job:
118
+ name: run_inference_experiment
119
+ chdir: null
120
+ override_dirname: experiments=temp_inference/kamel-usp_jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16
121
+ id: ???
122
+ num: ???
123
+ config_name: config
124
+ env_set: {}
125
+ env_copy: []
126
+ config:
127
+ override_dirname:
128
+ kv_sep: '='
129
+ item_sep: ','
130
+ exclude_keys: []
131
+ runtime:
132
+ version: 1.3.2
133
+ version_base: '1.1'
134
+ cwd: /workspace/jbcs2025
135
+ config_sources:
136
+ - path: hydra.conf
137
+ schema: pkg
138
+ provider: hydra
139
+ - path: /workspace/jbcs2025/configs
140
+ schema: file
141
+ provider: main
142
+ - path: ''
143
+ schema: structured
144
+ provider: schema
145
+ output_dir: /workspace/jbcs2025/inference_output/2025-07-13/19-15-36
146
+ choices:
147
+ experiments: temp_inference/kamel-usp_jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16
148
+ hydra/env: default
149
+ hydra/callbacks: null
150
+ hydra/job_logging: default
151
+ hydra/hydra_logging: default
152
+ hydra/hydra_help: default
153
+ hydra/help: default
154
+ hydra/sweeper: basic
155
+ hydra/launcher: basic
156
+ hydra/output: default
157
+ verbose: false
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16-tucano_classification_lora-C2-essay_only-r16/.hydra/overrides.yaml ADDED
@@ -0,0 +1 @@
 
 
1
+ - experiments=temp_inference/kamel-usp_jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16-tucano_classification_lora-C2-essay_only-r16/bootstrap_confidence_intervals.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
+ jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16-tucano_classification_lora-C2-essay_only-r16,2025-07-13 19:15:41,0.21268663521047046,0.06707541515778438,0.3508818060178967,0.28380639086011233,0.17118416853070587,0.11503203355555276,0.23195845400407022,0.11692642044851746,0.22042911158108158,0.15073799122838333,0.2949646121134494,0.14422662088506605
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16-tucano_classification_lora-C2-essay_only-r16/evaluation_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
+ 0.21739130434782608,70.60812450686403,0.2155774111675125,0.1376811594202898,0.17402959084916517,0.21739130434782608,0.22084770067813536,0,133,4,1,12,75,28,23,2,109,24,3,7,62,25,44,6,96,16,20,3,107,11,17,2025-07-13 19:15:41,jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16-tucano_classification_lora-C2-essay_only-r16
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16-tucano_classification_lora-C2-essay_only-r16/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16-tucano_classification_lora-C2-essay_only-r16_inference_results.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16-tucano_classification_lora-C2-essay_only-r16/run_inference_experiment.log ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2025-07-13 19:15:41,342][__main__][INFO] - Starting inference experiment
2
+ [2025-07-13 19:15:41,344][__main__][INFO] - cache_dir: /tmp/
3
+ dataset:
4
+ name: kamel-usp/aes_enem_dataset
5
+ split: JBCS2025
6
+ training_params:
7
+ seed: 42
8
+ num_train_epochs: 20
9
+ logging_steps: 100
10
+ metric_for_best_model: QWK
11
+ bf16: true
12
+ bootstrap:
13
+ enabled: true
14
+ n_bootstrap: 10000
15
+ bootstrap_seed: 42
16
+ metrics:
17
+ - QWK
18
+ - Macro_F1
19
+ - Weighted_F1
20
+ post_training_results:
21
+ model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
22
+ experiments:
23
+ model:
24
+ name: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16
25
+ type: tucano_classification_lora
26
+ num_labels: 6
27
+ output_dir: ./results/
28
+ logging_dir: ./logs/
29
+ best_model_dir: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16
30
+ lora_r: 16
31
+ lora_dropout: 0.1
32
+ lora_alpha: 32
33
+ lora_target_modules: all-linear
34
+ checkpoint_path: ''
35
+ tokenizer:
36
+ name: TucanoBR/Tucano-2b4-Instruct
37
+ dataset:
38
+ grade_index: 1
39
+ use_full_context: false
40
+ training_params:
41
+ weight_decay: 0.01
42
+ warmup_ratio: 0.1
43
+ learning_rate: 5.0e-05
44
+ train_batch_size: 8
45
+ eval_batch_size: 4
46
+ gradient_accumulation_steps: 2
47
+ gradient_checkpointing: true
48
+
49
+ [2025-07-13 19:15:41,346][__main__][INFO] - Running inference with fine-tuned HF model
50
+ [2025-07-13 19:15:42,420][transformers.tokenization_utils_base][INFO] - loading file tokenizer.model from cache at None
51
+ [2025-07-13 19:15:42,421][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at /tmp/models--TucanoBR--Tucano-2b4-Instruct/snapshots/d763c3ed97909de3b664742dd955bf35d1cca620/tokenizer.json
52
+ [2025-07-13 19:15:42,421][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at None
53
+ [2025-07-13 19:15:42,421][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--TucanoBR--Tucano-2b4-Instruct/snapshots/d763c3ed97909de3b664742dd955bf35d1cca620/special_tokens_map.json
54
+ [2025-07-13 19:15:42,421][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--TucanoBR--Tucano-2b4-Instruct/snapshots/d763c3ed97909de3b664742dd955bf35d1cca620/tokenizer_config.json
55
+ [2025-07-13 19:15:42,421][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
56
+ [2025-07-13 19:15:42,469][transformers.tokenization_utils_base][INFO] - Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
57
+ [2025-07-13 19:15:42,477][__main__][INFO] - Tokenizer function parameters- Padding:longest; Truncation: False; Use Full Context: False
58
+ [2025-07-13 19:15:44,250][__main__][INFO] -
59
+ Token statistics for 'train' split:
60
+ [2025-07-13 19:15:44,250][__main__][INFO] - Total examples: 500
61
+ [2025-07-13 19:15:44,250][__main__][INFO] - Min tokens: 2750
62
+ [2025-07-13 19:15:44,250][__main__][INFO] - Max tokens: 2750
63
+ [2025-07-13 19:15:44,251][__main__][INFO] - Avg tokens: 2750.00
64
+ [2025-07-13 19:15:44,251][__main__][INFO] - Std tokens: 0.00
65
+ [2025-07-13 19:15:44,621][__main__][INFO] -
66
+ Token statistics for 'validation' split:
67
+ [2025-07-13 19:15:44,621][__main__][INFO] - Total examples: 132
68
+ [2025-07-13 19:15:44,621][__main__][INFO] - Min tokens: 2492
69
+ [2025-07-13 19:15:44,621][__main__][INFO] - Max tokens: 2492
70
+ [2025-07-13 19:15:44,621][__main__][INFO] - Avg tokens: 2492.00
71
+ [2025-07-13 19:15:44,621][__main__][INFO] - Std tokens: 0.00
72
+ [2025-07-13 19:15:45,015][__main__][INFO] -
73
+ Token statistics for 'test' split:
74
+ [2025-07-13 19:15:45,015][__main__][INFO] - Total examples: 138
75
+ [2025-07-13 19:15:45,015][__main__][INFO] - Min tokens: 2545
76
+ [2025-07-13 19:15:45,015][__main__][INFO] - Max tokens: 2545
77
+ [2025-07-13 19:15:45,015][__main__][INFO] - Avg tokens: 2545.00
78
+ [2025-07-13 19:15:45,015][__main__][INFO] - Std tokens: 0.00
79
+ [2025-07-13 19:15:45,015][__main__][INFO] - If token statistics are the same (max, avg, min) keep in mind that this is due to batched tokenization and padding.
80
+ [2025-07-13 19:15:45,015][__main__][INFO] - Model max length: 4096. If it is the same as stats, then there is a high chance that sequences are being truncated.
81
+ [2025-07-13 19:15:45,015][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16
82
+ [2025-07-13 19:15:45,015][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16
83
+ [2025-07-13 19:15:47,736][__main__][INFO] - Model need ≈ 14.65 GiB to run inference and 42.44 for training
84
+ [2025-07-13 19:15:47,790][__main__][INFO] - Loading PEFT model configuration from kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16
85
+ [2025-07-13 19:15:47,790][__main__][INFO] - Base model name: TucanoBR/Tucano-2b4-Instruct
86
+ [2025-07-13 19:15:47,825][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--TucanoBR--Tucano-2b4-Instruct/snapshots/d763c3ed97909de3b664742dd955bf35d1cca620/config.json
87
+ [2025-07-13 19:15:47,827][transformers.configuration_utils][INFO] - Model config LlamaConfig {
88
+ "architectures": [
89
+ "LlamaForCausalLM"
90
+ ],
91
+ "attention_bias": false,
92
+ "attention_dropout": 0.0,
93
+ "bos_token_id": 1,
94
+ "eos_token_id": 2,
95
+ "head_dim": 160,
96
+ "hidden_act": "silu",
97
+ "hidden_size": 2560,
98
+ "id2label": {
99
+ "0": "LABEL_0",
100
+ "1": "LABEL_1",
101
+ "2": "LABEL_2",
102
+ "3": "LABEL_3",
103
+ "4": "LABEL_4",
104
+ "5": "LABEL_5"
105
+ },
106
+ "initializer_range": 0.02,
107
+ "intermediate_size": 10240,
108
+ "label2id": {
109
+ "LABEL_0": 0,
110
+ "LABEL_1": 1,
111
+ "LABEL_2": 2,
112
+ "LABEL_3": 3,
113
+ "LABEL_4": 4,
114
+ "LABEL_5": 5
115
+ },
116
+ "max_position_embeddings": 4096,
117
+ "mlp_bias": false,
118
+ "model_type": "llama",
119
+ "num_attention_heads": 16,
120
+ "num_hidden_layers": 24,
121
+ "num_key_value_heads": 4,
122
+ "pad_token_id": 3,
123
+ "pretraining_tp": 1,
124
+ "rms_norm_eps": 1e-05,
125
+ "rope_scaling": null,
126
+ "rope_theta": 10000.0,
127
+ "tie_word_embeddings": false,
128
+ "torch_dtype": "float32",
129
+ "transformers_version": "4.53.2",
130
+ "use_cache": false,
131
+ "vocab_size": 32002
132
+ }
133
+
134
+ [2025-07-13 19:15:47,997][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--TucanoBR--Tucano-2b4-Instruct/snapshots/d763c3ed97909de3b664742dd955bf35d1cca620/model.safetensors.index.json
135
+ [2025-07-13 19:15:47,998][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
136
+ [2025-07-13 19:15:47,998][transformers.modeling_utils][INFO] - Instantiating LlamaForSequenceClassification model under default dtype torch.float32.
137
+ [2025-07-13 19:15:47,999][transformers.modeling_utils][WARNING] - Flash Attention 2.0 only supports torch.float16 and torch.bfloat16 dtypes, but the current dype in LlamaForSequenceClassification is torch.float32. You should run training or inference using Automatic Mixed-Precision via the `with torch.autocast(device_type='torch_device'):` decorator, or load the model with the `torch_dtype` argument. Example: `model = AutoModel.from_pretrained("openai/whisper-tiny", attn_implementation="flash_attention_2", torch_dtype=torch.float16)`
138
+ [2025-07-13 19:15:49,389][transformers.modeling_utils][INFO] - Some weights of the model checkpoint at TucanoBR/Tucano-2b4-Instruct were not used when initializing LlamaForSequenceClassification: ['lm_head.weight']
139
+ - This IS expected if you are initializing LlamaForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
140
+ - This IS NOT expected if you are initializing LlamaForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
141
+ [2025-07-13 19:15:49,389][transformers.modeling_utils][WARNING] - Some weights of LlamaForSequenceClassification were not initialized from the model checkpoint at TucanoBR/Tucano-2b4-Instruct and are newly initialized: ['score.weight']
142
+ You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
143
+ [2025-07-13 19:15:51,973][__main__][INFO] - Loaded fine-tuned PEFT model from kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16
144
+ [2025-07-13 19:15:51,975][__main__][INFO] - None
145
+ [2025-07-13 19:15:51,987][transformers.training_args][INFO] - PyTorch: setting up devices
146
+ [2025-07-13 19:15:52,011][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
147
+ [2025-07-13 19:15:52,020][accelerate.utils.other][WARNING] - Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.
148
+ [2025-07-13 19:15:52,021][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
149
+ [2025-07-13 19:15:52,043][transformers.trainer][INFO] - Using auto half precision backend
150
+ [2025-07-13 19:15:52,044][transformers.trainer][WARNING] - No label_names provided for model class `PeftModelForSequenceClassification`. Since `PeftModel` hides base models input arguments, if label_names is not given, label_names can't be set automatically within `Trainer`. Note that empty label_names list will be used instead.
151
+ [2025-07-13 19:15:52,310][__main__][INFO] - Running inference on test dataset
152
+ [2025-07-13 19:15:52,312][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `PeftModelForSequenceClassification.forward` and have been ignored: essay_text, reference, id_prompt, prompt, essay_year, grades, supporting_text, id. If essay_text, reference, id_prompt, prompt, essay_year, grades, supporting_text, id are not expected by `PeftModelForSequenceClassification.forward`, you can safely ignore this message.
153
+ [2025-07-13 19:15:52,334][transformers.trainer][INFO] -
154
+ ***** Running Prediction *****
155
+ [2025-07-13 19:15:52,334][transformers.trainer][INFO] - Num examples = 138
156
+ [2025-07-13 19:15:52,334][transformers.trainer][INFO] - Batch size = 4
157
+ [2025-07-13 19:15:52,609][transformers.modeling_flash_attention_utils][WARNING] - The input hidden states seems to be silently casted in float32, this might be related to the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in torch.bfloat16.
158
+ [2025-07-13 19:16:22,331][__main__][INFO] - Inference results saved to jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r16-tucano_classification_lora-C2-essay_only-r16_inference_results.jsonl
159
+ [2025-07-13 19:16:22,336][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
160
+ [2025-07-13 19:18:07,639][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
161
+ [2025-07-13 19:18:07,639][__main__][INFO] - Bootstrap Confidence Intervals (95%):
162
+ [2025-07-13 19:18:07,639][__main__][INFO] - QWK: 0.2127 [0.0671, 0.3509]
163
+ [2025-07-13 19:18:07,639][__main__][INFO] - Macro_F1: 0.1712 [0.1150, 0.2320]
164
+ [2025-07-13 19:18:07,639][__main__][INFO] - Weighted_F1: 0.2204 [0.1507, 0.2950]
165
+ [2025-07-13 19:18:07,639][__main__][INFO] - Inference results: {'accuracy': 0.21739130434782608, 'RMSE': 70.60812450686403, 'QWK': 0.2155774111675125, 'HDIV': 0.1376811594202898, 'Macro_F1': 0.17402959084916517, 'Micro_F1': 0.21739130434782608, 'Weighted_F1': 0.22084770067813536, 'TP_0': np.int64(0), 'TN_0': np.int64(133), 'FP_0': np.int64(4), 'FN_0': np.int64(1), 'TP_1': np.int64(12), 'TN_1': np.int64(75), 'FP_1': np.int64(28), 'FN_1': np.int64(23), 'TP_2': np.int64(2), 'TN_2': np.int64(109), 'FP_2': np.int64(24), 'FN_2': np.int64(3), 'TP_3': np.int64(7), 'TN_3': np.int64(62), 'FP_3': np.int64(25), 'FN_3': np.int64(44), 'TP_4': np.int64(6), 'TN_4': np.int64(96), 'FP_4': np.int64(16), 'FN_4': np.int64(20), 'TP_5': np.int64(3), 'TN_5': np.int64(107), 'FP_5': np.int64(11), 'FN_5': np.int64(17)}
166
+ [2025-07-13 19:18:07,639][__main__][INFO] - Inference experiment completed
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r8-tucano_classification_lora-C2-essay_only-r8/.hydra/config.yaml ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ cache_dir: /tmp/
2
+ dataset:
3
+ name: kamel-usp/aes_enem_dataset
4
+ split: JBCS2025
5
+ training_params:
6
+ seed: 42
7
+ num_train_epochs: 20
8
+ logging_steps: 100
9
+ metric_for_best_model: QWK
10
+ bf16: true
11
+ bootstrap:
12
+ enabled: true
13
+ n_bootstrap: 10000
14
+ bootstrap_seed: 42
15
+ metrics:
16
+ - QWK
17
+ - Macro_F1
18
+ - Weighted_F1
19
+ post_training_results:
20
+ model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
21
+ experiments:
22
+ model:
23
+ name: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r8
24
+ type: tucano_classification_lora
25
+ num_labels: 6
26
+ output_dir: ./results/
27
+ logging_dir: ./logs/
28
+ best_model_dir: kamel-usp/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r8
29
+ lora_r: 8
30
+ lora_dropout: 0.05
31
+ lora_alpha: 16
32
+ lora_target_modules: all-linear
33
+ checkpoint_path: ''
34
+ tokenizer:
35
+ name: TucanoBR/Tucano-2b4-Instruct
36
+ dataset:
37
+ grade_index: 1
38
+ use_full_context: false
39
+ training_params:
40
+ weight_decay: 0.01
41
+ warmup_ratio: 0.1
42
+ learning_rate: 5.0e-05
43
+ train_batch_size: 8
44
+ eval_batch_size: 4
45
+ gradient_accumulation_steps: 2
46
+ gradient_checkpointing: true
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r8-tucano_classification_lora-C2-essay_only-r8/.hydra/hydra.yaml ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: inference_output/2025-07-13/19-12-58
4
+ sweep:
5
+ dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ simple:
72
+ format: '[%(asctime)s][HYDRA] %(message)s'
73
+ handlers:
74
+ console:
75
+ class: logging.StreamHandler
76
+ formatter: simple
77
+ stream: ext://sys.stdout
78
+ root:
79
+ level: INFO
80
+ handlers:
81
+ - console
82
+ loggers:
83
+ logging_example:
84
+ level: DEBUG
85
+ disable_existing_loggers: false
86
+ job_logging:
87
+ version: 1
88
+ formatters:
89
+ simple:
90
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
91
+ handlers:
92
+ console:
93
+ class: logging.StreamHandler
94
+ formatter: simple
95
+ stream: ext://sys.stdout
96
+ file:
97
+ class: logging.FileHandler
98
+ formatter: simple
99
+ filename: ${hydra.runtime.output_dir}/${hydra.job.name}.log
100
+ root:
101
+ level: INFO
102
+ handlers:
103
+ - console
104
+ - file
105
+ disable_existing_loggers: false
106
+ env: {}
107
+ mode: RUN
108
+ searchpath: []
109
+ callbacks: {}
110
+ output_subdir: .hydra
111
+ overrides:
112
+ hydra:
113
+ - hydra.run.dir=inference_output/2025-07-13/19-12-58
114
+ - hydra.mode=RUN
115
+ task:
116
+ - experiments=temp_inference/kamel-usp_jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r8
117
+ job:
118
+ name: run_inference_experiment
119
+ chdir: null
120
+ override_dirname: experiments=temp_inference/kamel-usp_jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r8
121
+ id: ???
122
+ num: ???
123
+ config_name: config
124
+ env_set: {}
125
+ env_copy: []
126
+ config:
127
+ override_dirname:
128
+ kv_sep: '='
129
+ item_sep: ','
130
+ exclude_keys: []
131
+ runtime:
132
+ version: 1.3.2
133
+ version_base: '1.1'
134
+ cwd: /workspace/jbcs2025
135
+ config_sources:
136
+ - path: hydra.conf
137
+ schema: pkg
138
+ provider: hydra
139
+ - path: /workspace/jbcs2025/configs
140
+ schema: file
141
+ provider: main
142
+ - path: ''
143
+ schema: structured
144
+ provider: schema
145
+ output_dir: /workspace/jbcs2025/inference_output/2025-07-13/19-12-58
146
+ choices:
147
+ experiments: temp_inference/kamel-usp_jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r8
148
+ hydra/env: default
149
+ hydra/callbacks: null
150
+ hydra/job_logging: default
151
+ hydra/hydra_logging: default
152
+ hydra/hydra_help: default
153
+ hydra/help: default
154
+ hydra/sweeper: basic
155
+ hydra/launcher: basic
156
+ hydra/output: default
157
+ verbose: false
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r8-tucano_classification_lora-C2-essay_only-r8/.hydra/overrides.yaml ADDED
@@ -0,0 +1 @@
 
 
1
+ - experiments=temp_inference/kamel-usp_jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r8
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r8-tucano_classification_lora-C2-essay_only-r8/bootstrap_confidence_intervals.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
+ jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r8-tucano_classification_lora-C2-essay_only-r8,2025-07-13 19:13:03,0.22765543842637567,0.06634735802075493,0.38464170683555055,0.3182943488147956,0.15226069620931507,0.10668661958018352,0.2003830920118047,0.09369647243162119,0.19524247402313993,0.12271293814431007,0.2705875619228997,0.14787462377858962
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r8-tucano_classification_lora-C2-essay_only-r8/evaluation_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
+ 0.2246376811594203,67.75916430879359,0.22918077183480012,0.1811594202898551,0.15410549674983645,0.2246376811594203,0.19513756825779216,0,131,6,1,9,90,13,26,3,94,39,2,3,86,1,48,16,68,44,10,0,114,4,20,2025-07-13 19:13:03,jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r8-tucano_classification_lora-C2-essay_only-r8
runs/slm_decoder_models/tucano2b4/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r8-tucano_classification_lora-C2-essay_only-r8/jbcs2025_Tucano-2b4-Instruct-tucano_classification_lora-C2-essay_only-r8-tucano_classification_lora-C2-essay_only-r8_inference_results.jsonl ADDED
The diff for this file is too large to render. See raw diff