Notebook to create CI tables in latex
Browse files- CriaTabelaLatex-CI.ipynb +203 -0
CriaTabelaLatex-CI.ipynb
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": null,
|
20 |
+
"metadata": {
|
21 |
+
"id": "dQAr2gM1_wFl"
|
22 |
+
},
|
23 |
+
"outputs": [],
|
24 |
+
"source": [
|
25 |
+
"import pandas as pd"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"source": [
|
31 |
+
"\n",
|
32 |
+
"df = pd.read_parquet('evaluation_results-00000-of-00001.parquet', engine='pyarrow')\n",
|
33 |
+
"df1 = pd.read_parquet('boostrap_confidence_intervals-00000-of-00001.parquet', engine='pyarrow')"
|
34 |
+
],
|
35 |
+
"metadata": {
|
36 |
+
"id": "Zlng_K58AFsV"
|
37 |
+
},
|
38 |
+
"execution_count": null,
|
39 |
+
"outputs": []
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "code",
|
43 |
+
"source": [
|
44 |
+
"def filtrar_respostas(df, modelo):\n",
|
45 |
+
" filtro = df[df['id'].str.startswith(modelo)]\n",
|
46 |
+
" dic = {'C1': \"\", 'C2': \"\", 'C3': \"\", 'C4': \"\", 'C5': \"\"}\n",
|
47 |
+
" for idx, row in filtro.iterrows():\n",
|
48 |
+
" for key in dic:\n",
|
49 |
+
" if key in row['id']:\n",
|
50 |
+
" print_string = f\"{row['Micro_F1']:.2f} & {row['Weighted_F1']:.2f} & {row['QWK']:.2f} &\"\n",
|
51 |
+
" dic[key] += print_string\n",
|
52 |
+
" return dic\n",
|
53 |
+
"\n",
|
54 |
+
"def printar_final(dic, modelo):\n",
|
55 |
+
" string = f\"{modelo} \"\n",
|
56 |
+
" for key in dic:\n",
|
57 |
+
" string += f\"& {dic[key]} \"\n",
|
58 |
+
" print(string[:-2])\n",
|
59 |
+
"\n",
|
60 |
+
"def filtrar_dfs(perf, boot, modelo, final=\"\"):\n",
|
61 |
+
" filtro_perf = perf[perf['id'].str.startswith(modelo) & perf['id'].str.endswith(final)]\n",
|
62 |
+
" filtro_boot = boot[boot['experiment_id'].str.startswith(modelo) & boot['experiment_id'].str.endswith(final)]\n",
|
63 |
+
" dic = {'C1': {}, 'C2': {}, 'C3': {}, 'C4': {}, 'C5': {}}\n",
|
64 |
+
" string = \"\"\n",
|
65 |
+
" for idx, row in filtro_perf.iterrows():\n",
|
66 |
+
" for key in dic:\n",
|
67 |
+
" if key in row['id']:\n",
|
68 |
+
" dic[key]['Micro_F1'] = row['Micro_F1']\n",
|
69 |
+
" dic[key]['Weighted_F1'] = row['Weighted_F1']\n",
|
70 |
+
" dic[key]['QWK'] = row['QWK']\n",
|
71 |
+
" for idx, row in filtro_boot.iterrows():\n",
|
72 |
+
" for key in dic:\n",
|
73 |
+
" if key in row['experiment_id']:\n",
|
74 |
+
" dic[key]['QWK_mean'] = row['QWK_mean']\n",
|
75 |
+
" dic[key]['QWK_upper_95ci'] = row['QWK_upper_95ci']\n",
|
76 |
+
" dic[key]['QWK_lower_95ci'] = row['QWK_lower_95ci']\n",
|
77 |
+
" print(dic)\n",
|
78 |
+
" string = \"\"\n",
|
79 |
+
" for key in dic:\n",
|
80 |
+
" string += f\"{dic[key]['QWK_lower_95ci']:.2f} & {dic[key]['QWK_upper_95ci']:.2f} &\"\n",
|
81 |
+
" print(f\"{modelo}-{final} & {string[:-2]}\")\n",
|
82 |
+
"\n",
|
83 |
+
"modelos = [(\"jbcs2025_mbert_base\", \"\"), (\"jbcs2025_bertimbau-large\", \"\"), (\"jbcs2025_bertimbau_base-\", \"\"), (\"jbcs2025_phi35-balanced\", \"essay_only\"),\n",
|
84 |
+
" (\"jbcs2025_phi4-balanced\", \"essay_only\"), (\"jbcs2025_llama31_8b-balanced\", \"essay_only\"), (\"jbcs2025_Phi-3.5-mini-instruct\", \"full_context\"),\n",
|
85 |
+
" (\"jbcs2025_phi-4-phi4\", \"full_context\"), (\"jbcs2025_Llama-3.1-8B-llama31\", \"full_context\")]\n",
|
86 |
+
"for (modelo, final) in modelos:\n",
|
87 |
+
" filtrar_dfs(df, df1, modelo, final=final)"
|
88 |
+
],
|
89 |
+
"metadata": {
|
90 |
+
"colab": {
|
91 |
+
"base_uri": "https://localhost:8080/"
|
92 |
+
},
|
93 |
+
"id": "2_4fdVNNARGi",
|
94 |
+
"outputId": "61516f30-f453-4069-b51a-b1df21126dd8"
|
95 |
+
},
|
96 |
+
"execution_count": null,
|
97 |
+
"outputs": [
|
98 |
+
{
|
99 |
+
"output_type": "stream",
|
100 |
+
"name": "stdout",
|
101 |
+
"text": [
|
102 |
+
"{'C1': {'Micro_F1': 0.5362318840579711, 'Weighted_F1': 0.518137852459147, 'QWK': 0.4505920783993467, 'QWK_mean': 0.4469509804733242, 'QWK_upper_95ci': 0.5646932058882819, 'QWK_lower_95ci': 0.3273452629017379}, 'C2': {'Micro_F1': 0.3623188405797101, 'Weighted_F1': 0.3182603637608693, 'QWK': 0.1449814126394052, 'QWK_mean': 0.1443789019267171, 'QWK_upper_95ci': 0.285562229212569, 'QWK_lower_95ci': 0.0019340927528358}, 'C3': {'Micro_F1': 0.2318840579710145, 'Weighted_F1': 0.1613437300185681, 'QWK': 0.2641316569559441, 'QWK_mean': 0.2618424087718754, 'QWK_upper_95ci': 0.4199083537960727, 'QWK_lower_95ci': 0.1021015072944112}, 'C4': {'Micro_F1': 0.5, 'Weighted_F1': 0.4091229461257213, 'QWK': 0.2817080943275972, 'QWK_mean': 0.2763369862905251, 'QWK_upper_95ci': 0.4236573729369323, 'QWK_lower_95ci': 0.1182640144665461}, 'C5': {'Micro_F1': 0.4057971014492754, 'Weighted_F1': 0.3828592483419307, 'QWK': 0.5735521338377112, 'QWK_mean': 0.5708670849334949, 'QWK_upper_95ci': 0.6715233618747556, 'QWK_lower_95ci': 0.4597349333381409}}\n",
|
103 |
+
"jbcs2025_mbert_base- & 0.33 & 0.56 &0.00 & 0.29 &0.10 & 0.42 &0.12 & 0.42 &0.46 & 0.67\n",
|
104 |
+
"{'C1': {'Micro_F1': 0.7028985507246377, 'Weighted_F1': 0.7092465463174845, 'QWK': 0.7080553295362083, 'QWK_mean': 0.7077306949563342, 'QWK_upper_95ci': 0.7925777763902052, 'QWK_lower_95ci': 0.6143517863619989}, 'C2': {'Micro_F1': 0.3985507246376811, 'Weighted_F1': 0.3825485695613519, 'QWK': 0.4242242542347474, 'QWK_mean': 0.421524005294385, 'QWK_upper_95ci': 0.5651890498796338, 'QWK_lower_95ci': 0.2688782617235809}, 'C3': {'Micro_F1': 0.2898550724637681, 'Weighted_F1': 0.2482589892502322, 'QWK': 0.2693773824650572, 'QWK_mean': 0.2667552963854427, 'QWK_upper_95ci': 0.3967413784980497, 'QWK_lower_95ci': 0.1308675494473104}, 'C4': {'Micro_F1': 0.5434782608695652, 'Weighted_F1': 0.5677143444488495, 'QWK': 0.5718939041414612, 'QWK_mean': 0.5689578701688437, 'QWK_upper_95ci': 0.6680998143802181, 'QWK_lower_95ci': 0.4614869526110953}, 'C5': {'Micro_F1': 0.3623188405797101, 'Weighted_F1': 0.3520852841017614, 'QWK': 0.4785241515279538, 'QWK_mean': 0.4765829843065011, 'QWK_upper_95ci': 0.5987775413884535, 'QWK_lower_95ci': 0.3497986919778412}}\n",
|
105 |
+
"jbcs2025_bertimbau-large- & 0.61 & 0.79 &0.27 & 0.57 &0.13 & 0.40 &0.46 & 0.67 &0.35 & 0.60\n",
|
106 |
+
"{'C1': {'Micro_F1': 0.644927536231884, 'Weighted_F1': 0.6413771139990777, 'QWK': 0.6742722265932337, 'QWK_mean': 0.6726698793738349, 'QWK_upper_95ci': 0.7587417074110893, 'QWK_lower_95ci': 0.5786694701512399}, 'C2': {'Micro_F1': 0.3768115942028985, 'Weighted_F1': 0.3822623600358202, 'QWK': 0.4220445459737294, 'QWK_mean': 0.4181918820477945, 'QWK_upper_95ci': 0.5466018786751335, 'QWK_lower_95ci': 0.2775986575464428}, 'C3': {'Micro_F1': 0.3768115942028985, 'Weighted_F1': 0.3338029470113428, 'QWK': 0.3452054794520547, 'QWK_mean': 0.3442546344979946, 'QWK_upper_95ci': 0.4793389519462236, 'QWK_lower_95ci': 0.2084844703358946}, 'C4': {'Micro_F1': 0.644927536231884, 'Weighted_F1': 0.6545879036165807, 'QWK': 0.6258134490238612, 'QWK_mean': 0.623338029229533, 'QWK_upper_95ci': 0.7250524714839471, 'QWK_lower_95ci': 0.5110704244499952}, 'C5': {'Micro_F1': 0.3188405797101449, 'Weighted_F1': 0.2580841303820561, 'QWK': 0.476219483623073, 'QWK_mean': 0.4734979990112671, 'QWK_upper_95ci': 0.5947975929869902, 'QWK_lower_95ci': 0.3401973117894254}}\n",
|
107 |
+
"jbcs2025_bertimbau_base-- & 0.58 & 0.76 &0.28 & 0.55 &0.21 & 0.48 &0.51 & 0.73 &0.34 & 0.59\n",
|
108 |
+
"{'C1': {'Micro_F1': 0.6594202898550725, 'Weighted_F1': 0.6574796332262731, 'QWK': 0.6638104838709677, 'QWK_mean': 0.6616991580966015, 'QWK_upper_95ci': 0.7606224171519745, 'QWK_lower_95ci': 0.5557810707563048}, 'C2': {'Micro_F1': 0.3623188405797101, 'Weighted_F1': 0.3284848932013696, 'QWK': 0.3441810010847668, 'QWK_mean': 0.3409626834563599, 'QWK_upper_95ci': 0.4858406168704411, 'QWK_lower_95ci': 0.1852545870348362}, 'C3': {'Micro_F1': 0.3333333333333333, 'Weighted_F1': 0.3336611749101599, 'QWK': 0.2353562005277044, 'QWK_mean': 0.2335375020354423, 'QWK_upper_95ci': 0.3863527435429713, 'QWK_lower_95ci': 0.0729459707036765}, 'C4': {'Micro_F1': 0.572463768115942, 'Weighted_F1': 0.593693390260896, 'QWK': 0.5590312815338042, 'QWK_mean': 0.5562941450165412, 'QWK_upper_95ci': 0.6581198581878515, 'QWK_lower_95ci': 0.4492714610494979}, 'C5': {'Micro_F1': 0.3550724637681159, 'Weighted_F1': 0.3238493856342826, 'QWK': 0.5186813186813186, 'QWK_mean': 0.5153615140000185, 'QWK_upper_95ci': 0.6379857316052329, 'QWK_lower_95ci': 0.3832796853569664}}\n",
|
109 |
+
"jbcs2025_phi35-balanced-essay_only & 0.56 & 0.76 &0.19 & 0.49 &0.07 & 0.39 &0.45 & 0.66 &0.38 & 0.64\n",
|
110 |
+
"{'C1': {'Micro_F1': 0.6159420289855072, 'Weighted_F1': 0.6184188545576659, 'QWK': 0.6748637903107053, 'QWK_mean': 0.6728228615718327, 'QWK_upper_95ci': 0.7602092291188651, 'QWK_lower_95ci': 0.577372741501964}, 'C2': {'Micro_F1': 0.4565217391304347, 'Weighted_F1': 0.4331935675507009, 'QWK': 0.4118587182355762, 'QWK_mean': 0.408434856024602, 'QWK_upper_95ci': 0.5576720127443971, 'QWK_lower_95ci': 0.2487511341654639}, 'C3': {'Micro_F1': 0.3333333333333333, 'Weighted_F1': 0.2747500757119841, 'QWK': 0.2938151902453355, 'QWK_mean': 0.2922470743680929, 'QWK_upper_95ci': 0.4396449924380227, 'QWK_lower_95ci': 0.1358100563577918}, 'C4': {'Micro_F1': 0.7028985507246377, 'Weighted_F1': 0.6761155293109196, 'QWK': 0.579465541490858, 'QWK_mean': 0.5787732176948, 'QWK_upper_95ci': 0.6877064220183486, 'QWK_lower_95ci': 0.4624229582708449}, 'C5': {'Micro_F1': 0.3115942028985507, 'Weighted_F1': 0.2439300683587842, 'QWK': 0.4574405346962846, 'QWK_mean': 0.4543289424889599, 'QWK_upper_95ci': 0.5775760593701588, 'QWK_lower_95ci': 0.3179854281772712}}\n",
|
111 |
+
"jbcs2025_phi4-balanced-essay_only & 0.58 & 0.76 &0.25 & 0.56 &0.14 & 0.44 &0.46 & 0.69 &0.32 & 0.58\n",
|
112 |
+
"{'C1': {'Micro_F1': 0.6884057971014492, 'Weighted_F1': 0.6710623362797277, 'QWK': 0.6308698236576183, 'QWK_mean': 0.6295464847933743, 'QWK_upper_95ci': 0.7354045431661362, 'QWK_lower_95ci': 0.5147318788303388}, 'C2': {'Micro_F1': 0.3478260869565217, 'Weighted_F1': 0.3205156603404325, 'QWK': 0.3259325044404972, 'QWK_mean': 0.3241019129105552, 'QWK_upper_95ci': 0.4686752350465797, 'QWK_lower_95ci': 0.1789150070543026}, 'C3': {'Micro_F1': 0.4202898550724637, 'Weighted_F1': 0.3911901539778777, 'QWK': 0.3788697141351601, 'QWK_mean': 0.3764592992419188, 'QWK_upper_95ci': 0.5044785095617992, 'QWK_lower_95ci': 0.2482348708257247}, 'C4': {'Micro_F1': 0.6521739130434783, 'Weighted_F1': 0.6518531929244537, 'QWK': 0.5181762168823167, 'QWK_mean': 0.5159162816272473, 'QWK_upper_95ci': 0.6375067485990894, 'QWK_lower_95ci': 0.3896899614645441}, 'C5': {'Micro_F1': 0.2681159420289855, 'Weighted_F1': 0.2546847901101209, 'QWK': 0.3773307964120685, 'QWK_mean': 0.3747412056981141, 'QWK_upper_95ci': 0.5091521322586843, 'QWK_lower_95ci': 0.23148683225562}}\n",
|
113 |
+
"jbcs2025_llama31_8b-balanced-essay_only & 0.51 & 0.74 &0.18 & 0.47 &0.25 & 0.50 &0.39 & 0.64 &0.23 & 0.51\n",
|
114 |
+
"{'C1': {'Micro_F1': 0.217391304347826, 'Weighted_F1': 0.1687997907859967, 'QWK': 0.2897608544230323, 'QWK_mean': 0.2879013220800692, 'QWK_upper_95ci': 0.4180318752745349, 'QWK_lower_95ci': 0.1492478126231326}, 'C2': {'Micro_F1': 0.217391304347826, 'Weighted_F1': 0.1687997907859967, 'QWK': 0.2897608544230323, 'QWK_mean': 0.2879013220800692, 'QWK_upper_95ci': 0.4180318752745349, 'QWK_lower_95ci': 0.1492478126231326}, 'C3': {'Micro_F1': 0.5217391304347826, 'Weighted_F1': 0.5157532058528155, 'QWK': 0.68215073742887, 'QWK_mean': 0.6784054100778548, 'QWK_upper_95ci': 0.7665213161461424, 'QWK_lower_95ci': 0.5789753729855492}, 'C4': {'Micro_F1': 0.6594202898550725, 'Weighted_F1': 0.6261409273457467, 'QWK': 0.4689490445859872, 'QWK_mean': 0.4684319359888135, 'QWK_upper_95ci': 0.5818181818181818, 'QWK_lower_95ci': 0.354099864489924}, 'C5': {'Micro_F1': 0.3333333333333333, 'Weighted_F1': 0.3008136591917735, 'QWK': 0.4890643389564535, 'QWK_mean': 0.4866040546746337, 'QWK_upper_95ci': 0.6122719854533736, 'QWK_lower_95ci': 0.3491336242147614}}\n",
|
115 |
+
"jbcs2025_Phi-3.5-mini-instruct-full_context & 0.15 & 0.42 &0.15 & 0.42 &0.58 & 0.77 &0.35 & 0.58 &0.35 & 0.61\n",
|
116 |
+
"{'C1': {'Micro_F1': 0.6376811594202898, 'Weighted_F1': 0.6354643426463825, 'QWK': 0.642614752634399, 'QWK_mean': 0.6417455296636442, 'QWK_upper_95ci': 0.7221995154900485, 'QWK_lower_95ci': 0.5534959702303135}, 'C2': {'Micro_F1': 0.4420289855072464, 'Weighted_F1': 0.3727858293075684, 'QWK': 0.4587224505042959, 'QWK_mean': 0.4544687530156993, 'QWK_upper_95ci': 0.5738800252215724, 'QWK_lower_95ci': 0.325822690895961}, 'C3': {'Micro_F1': 0.4565217391304347, 'Weighted_F1': 0.4145905872632278, 'QWK': 0.6404105501849862, 'QWK_mean': 0.6368017049735983, 'QWK_upper_95ci': 0.7283785107281081, 'QWK_lower_95ci': 0.5336049056396244}, 'C4': {'Micro_F1': 0.7318840579710145, 'Weighted_F1': 0.6872463768115942, 'QWK': 0.5601593625498008, 'QWK_mean': 0.5622525366238156, 'QWK_upper_95ci': 0.6667808258369575, 'QWK_lower_95ci': 0.4570995751571452}, 'C5': {'Micro_F1': 0.3623188405797101, 'Weighted_F1': 0.3672380004905022, 'QWK': 0.5073723420766724, 'QWK_mean': 0.5024746726275736, 'QWK_upper_95ci': 0.6317146430085705, 'QWK_lower_95ci': 0.3566272536367714}}\n",
|
117 |
+
"jbcs2025_phi-4-phi4-full_context & 0.55 & 0.72 &0.33 & 0.57 &0.53 & 0.73 &0.46 & 0.67 &0.36 & 0.63\n",
|
118 |
+
"{'C1': {'Micro_F1': 0.6811594202898551, 'Weighted_F1': 0.655233980808711, 'QWK': 0.6525276002324231, 'QWK_mean': 0.6513882888286967, 'QWK_upper_95ci': 0.745725728701958, 'QWK_lower_95ci': 0.5488248441997104}, 'C2': {'Micro_F1': 0.3768115942028985, 'Weighted_F1': 0.3372856483605482, 'QWK': 0.3204971475142625, 'QWK_mean': 0.3171723261367537, 'QWK_upper_95ci': 0.4365708703636233, 'QWK_lower_95ci': 0.1914638191605268}, 'C3': {'Micro_F1': 0.3550724637681159, 'Weighted_F1': 0.3410931961351028, 'QWK': 0.3373259954677889, 'QWK_mean': 0.3340102348845638, 'QWK_upper_95ci': 0.4823077722195361, 'QWK_lower_95ci': 0.1776691149012335}, 'C4': {'Micro_F1': 0.5869565217391305, 'Weighted_F1': 0.5764511923932214, 'QWK': 0.4831460674157303, 'QWK_mean': 0.4792630651774341, 'QWK_upper_95ci': 0.6020372960585834, 'QWK_lower_95ci': 0.3507696538121665}, 'C5': {'Micro_F1': 0.2391304347826087, 'Weighted_F1': 0.2215770027405685, 'QWK': 0.1835841058368659, 'QWK_mean': 0.1818097905579081, 'QWK_upper_95ci': 0.3405974422544362, 'QWK_lower_95ci': 0.012417733580868}}\n",
|
119 |
+
"jbcs2025_Llama-3.1-8B-llama31-full_context & 0.55 & 0.75 &0.19 & 0.44 &0.18 & 0.48 &0.35 & 0.60 &0.01 & 0.34\n"
|
120 |
+
]
|
121 |
+
}
|
122 |
+
]
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"cell_type": "code",
|
126 |
+
"source": [
|
127 |
+
"modelos = ['jbcs2025_bertimbau_base-']"
|
128 |
+
],
|
129 |
+
"metadata": {
|
130 |
+
"id": "dhyTkpR2ARwp"
|
131 |
+
},
|
132 |
+
"execution_count": null,
|
133 |
+
"outputs": []
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"cell_type": "code",
|
137 |
+
"source": [],
|
138 |
+
"metadata": {
|
139 |
+
"id": "zyaRKx5oChUn"
|
140 |
+
},
|
141 |
+
"execution_count": null,
|
142 |
+
"outputs": []
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"cell_type": "code",
|
146 |
+
"source": [
|
147 |
+
"from torch import nn\n",
|
148 |
+
"import torch"
|
149 |
+
],
|
150 |
+
"metadata": {
|
151 |
+
"id": "cB-6u1yyChfR"
|
152 |
+
},
|
153 |
+
"execution_count": null,
|
154 |
+
"outputs": []
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"cell_type": "code",
|
158 |
+
"source": [
|
159 |
+
"m = nn.Sigmoid()\n",
|
160 |
+
"input = torch.randn(2)\n",
|
161 |
+
"print(input)\n",
|
162 |
+
"output = m(torch.tensor(-100))\n",
|
163 |
+
"output"
|
164 |
+
],
|
165 |
+
"metadata": {
|
166 |
+
"colab": {
|
167 |
+
"base_uri": "https://localhost:8080/"
|
168 |
+
},
|
169 |
+
"id": "IJ4ySLhpClfe",
|
170 |
+
"outputId": "b48b901d-fdec-4515-830c-8a1069d2b807"
|
171 |
+
},
|
172 |
+
"execution_count": null,
|
173 |
+
"outputs": [
|
174 |
+
{
|
175 |
+
"output_type": "stream",
|
176 |
+
"name": "stdout",
|
177 |
+
"text": [
|
178 |
+
"tensor([ 1.5602, -1.1152])\n"
|
179 |
+
]
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"output_type": "execute_result",
|
183 |
+
"data": {
|
184 |
+
"text/plain": [
|
185 |
+
"tensor(0.)"
|
186 |
+
]
|
187 |
+
},
|
188 |
+
"metadata": {},
|
189 |
+
"execution_count": 6
|
190 |
+
}
|
191 |
+
]
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"cell_type": "code",
|
195 |
+
"source": [],
|
196 |
+
"metadata": {
|
197 |
+
"id": "kvuSSIcCCuOa"
|
198 |
+
},
|
199 |
+
"execution_count": null,
|
200 |
+
"outputs": []
|
201 |
+
}
|
202 |
+
]
|
203 |
+
}
|