update files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- runs/api_models/compute_bootstrap_ci.py +100 -40
- runs/api_models/deepseek-r1/deepseek-reasoner-zero-shot-C1/bootstrap_confidence_intervals.csv +1 -1
- runs/api_models/deepseek-r1/deepseek-reasoner-zero-shot-C2/bootstrap_confidence_intervals.csv +1 -1
- runs/api_models/deepseek-r1/deepseek-reasoner-zero-shot-C3/bootstrap_confidence_intervals.csv +1 -1
- runs/api_models/deepseek-r1/deepseek-reasoner-zero-shot-C4/bootstrap_confidence_intervals.csv +1 -1
- runs/api_models/deepseek-r1/deepseek-reasoner-zero-shot-C5/bootstrap_confidence_intervals.csv +1 -1
- runs/api_models/gpt-4o/gpt-4o-2024-11-20-zero-shot-C1/bootstrap_confidence_intervals.csv +1 -1
- runs/api_models/gpt-4o/gpt-4o-2024-11-20-zero-shot-C2/bootstrap_confidence_intervals.csv +1 -1
- runs/api_models/gpt-4o/gpt-4o-2024-11-20-zero-shot-C3/bootstrap_confidence_intervals.csv +1 -1
- runs/api_models/gpt-4o/gpt-4o-2024-11-20-zero-shot-C4/bootstrap_confidence_intervals.csv +1 -1
- runs/api_models/gpt-4o/gpt-4o-2024-11-20-zero-shot-C5/bootstrap_confidence_intervals.csv +1 -1
- runs/api_models/sabia-3/sabia-3-zero-shot-C1/bootstrap_confidence_intervals.csv +1 -1
- runs/api_models/sabia-3/sabia-3-zero-shot-C2/bootstrap_confidence_intervals.csv +1 -1
- runs/api_models/sabia-3/sabia-3-zero-shot-C3/bootstrap_confidence_intervals.csv +1 -1
- runs/api_models/sabia-3/sabia-3-zero-shot-C4/bootstrap_confidence_intervals.csv +1 -1
- runs/api_models/sabia-3/sabia-3-zero-shot-C5/bootstrap_confidence_intervals.csv +1 -1
- runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C1-encoder_classification-C1 → jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only}/.hydra/config.yaml +1 -0
- runs/base_models/{mbert/jbcs2025_mbert_base-C1-encoder_classification-C1 → bertimbau/jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only}/.hydra/hydra.yaml +3 -3
- runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C1-encoder_classification-C1 → jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only}/.hydra/overrides.yaml +0 -0
- runs/base_models/bertimbau/jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only/bootstrap_confidence_intervals.csv +2 -0
- runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C1-encoder_classification-C1 → jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only}/evaluation_results.csv +1 -1
- runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C1-encoder_classification-C1/jbcs2025_bertimbau_base-C1-encoder_classification-C1_inference_results.jsonl → jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only/jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only_inference_results.jsonl} +0 -0
- runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C1-encoder_classification-C1 → jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only}/run_inference_experiment.log +49 -46
- runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C2-encoder_classification-C2 → jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only}/.hydra/config.yaml +1 -0
- runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C2-encoder_classification-C2 → jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only}/.hydra/hydra.yaml +3 -3
- runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C2-encoder_classification-C2 → jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only}/.hydra/overrides.yaml +0 -0
- runs/base_models/bertimbau/jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only/bootstrap_confidence_intervals.csv +2 -0
- runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C2-encoder_classification-C2 → jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only}/evaluation_results.csv +1 -1
- runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C2-encoder_classification-C2/jbcs2025_bertimbau_base-C2-encoder_classification-C2_inference_results.jsonl → jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only/jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only_inference_results.jsonl} +0 -0
- runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C2-encoder_classification-C2 → jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only}/run_inference_experiment.log +49 -46
- runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C3-encoder_classification-C3 → jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only}/.hydra/config.yaml +1 -0
- runs/base_models/{mbert/jbcs2025_mbert_base-C3-encoder_classification-C3 → bertimbau/jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only}/.hydra/hydra.yaml +3 -3
- runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C3-encoder_classification-C3 → jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only}/.hydra/overrides.yaml +0 -0
- runs/base_models/bertimbau/jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only/bootstrap_confidence_intervals.csv +2 -0
- runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C3-encoder_classification-C3 → jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only}/evaluation_results.csv +1 -1
- runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C3-encoder_classification-C3/jbcs2025_bertimbau_base-C3-encoder_classification-C3_inference_results.jsonl → jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only/jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only_inference_results.jsonl} +0 -0
- runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C3-encoder_classification-C3 → jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only}/run_inference_experiment.log +49 -46
- runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C4-encoder_classification-C4 → jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only}/.hydra/config.yaml +1 -0
- runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C4-encoder_classification-C4 → jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only}/.hydra/hydra.yaml +3 -3
- runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C4-encoder_classification-C4 → jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only}/.hydra/overrides.yaml +0 -0
- runs/base_models/bertimbau/jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only/bootstrap_confidence_intervals.csv +2 -0
- runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C4-encoder_classification-C4 → jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only}/evaluation_results.csv +1 -1
- runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C4-encoder_classification-C4/jbcs2025_bertimbau_base-C4-encoder_classification-C4_inference_results.jsonl → jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only/jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only_inference_results.jsonl} +0 -0
- runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C4-encoder_classification-C4 → jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only}/run_inference_experiment.log +49 -46
- runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C5-encoder_classification-C5 → jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only}/.hydra/config.yaml +1 -0
- runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C5-encoder_classification-C5 → jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only}/.hydra/hydra.yaml +3 -3
- runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C5-encoder_classification-C5 → jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only}/.hydra/overrides.yaml +0 -0
- runs/base_models/bertimbau/jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only/bootstrap_confidence_intervals.csv +2 -0
- runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C5-encoder_classification-C5 → jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only}/evaluation_results.csv +1 -1
- runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C5-encoder_classification-C5/jbcs2025_bertimbau_base-C5-encoder_classification-C5_inference_results.jsonl → jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only/jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only_inference_results.jsonl} +0 -0
runs/api_models/compute_bootstrap_ci.py
CHANGED
@@ -1,7 +1,5 @@
|
|
1 |
import argparse
|
2 |
import json
|
3 |
-
import re
|
4 |
-
import sys
|
5 |
from pathlib import Path
|
6 |
from typing import Dict, List, Tuple
|
7 |
|
@@ -45,29 +43,38 @@ def extract_config_from_log(log_path: Path) -> Dict:
|
|
45 |
return OmegaConf.create(config_dict)
|
46 |
|
47 |
|
48 |
-
def
|
49 |
"""
|
50 |
-
Load predictions and labels from the inference results JSONL file.
|
51 |
|
52 |
Returns:
|
53 |
-
|
54 |
-
|
55 |
"""
|
56 |
-
|
57 |
-
|
58 |
|
59 |
with open(jsonl_path, 'r', encoding='utf-8') as f:
|
60 |
for line in f:
|
61 |
data = json.loads(line.strip())
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
|
68 |
-
def
|
69 |
-
|
70 |
-
|
71 |
metrics_to_compute: List[str],
|
72 |
cfg: DictConfig,
|
73 |
n_bootstrap: int = 1000,
|
@@ -75,11 +82,17 @@ def compute_bootstrap_confidence_intervals(
|
|
75 |
random_state: int = 42,
|
76 |
) -> Dict[str, Tuple[float, float, float]]:
|
77 |
"""
|
78 |
-
Compute bootstrap confidence intervals for specified metrics.
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
Parameters:
|
81 |
-
|
82 |
-
|
83 |
metrics_to_compute: List of metric names to compute CIs for
|
84 |
cfg: Configuration object
|
85 |
n_bootstrap: Number of bootstrap samples
|
@@ -92,24 +105,46 @@ def compute_bootstrap_confidence_intervals(
|
|
92 |
if random_state is not None:
|
93 |
np.random.seed(random_state)
|
94 |
|
95 |
-
|
|
|
|
|
|
|
|
|
96 |
bootstrap_metrics = {metric: [] for metric in metrics_to_compute}
|
97 |
|
98 |
# Perform bootstrap sampling
|
99 |
for _ in tqdm(range(n_bootstrap), desc="Performing Bootstrap samples"):
|
100 |
-
# Sample with replacement
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
108 |
|
109 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
for metric in metrics_to_compute:
|
111 |
-
if metric in
|
112 |
-
|
|
|
113 |
|
114 |
# Calculate confidence intervals
|
115 |
alpha = 1 - confidence_level
|
@@ -171,7 +206,7 @@ def main():
|
|
171 |
--confidence-level 0.99
|
172 |
"""
|
173 |
parser = argparse.ArgumentParser(
|
174 |
-
description='Compute bootstrap confidence intervals for API model inference results'
|
175 |
)
|
176 |
parser.add_argument(
|
177 |
'experiment_dir',
|
@@ -238,14 +273,14 @@ def main():
|
|
238 |
except Exception as e:
|
239 |
raise RuntimeError(f"Failed to extract configuration from log file: {e}")
|
240 |
|
241 |
-
# Load predictions and labels
|
242 |
-
|
243 |
-
print(f"Loaded {len(
|
244 |
|
245 |
-
# Compute bootstrap confidence intervals
|
246 |
-
ci_results =
|
247 |
-
|
248 |
-
|
249 |
metrics_to_compute=args.metrics,
|
250 |
cfg=cfg,
|
251 |
n_bootstrap=args.n_bootstrap,
|
@@ -253,13 +288,38 @@ def main():
|
|
253 |
random_state=seed,
|
254 |
)
|
255 |
|
256 |
-
#
|
257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
for metric, (mean_val, lower, upper) in ci_results.items():
|
259 |
print(f" {metric}: {mean_val:.4f} [{lower:.4f}, {upper:.4f}]")
|
260 |
|
261 |
# Save results
|
262 |
-
output_path = exp_dir /
|
263 |
save_results_to_csv(experiment_id, ci_results, output_path)
|
264 |
|
265 |
|
|
|
1 |
import argparse
|
2 |
import json
|
|
|
|
|
3 |
from pathlib import Path
|
4 |
from typing import Dict, List, Tuple
|
5 |
|
|
|
43 |
return OmegaConf.create(config_dict)
|
44 |
|
45 |
|
46 |
+
def load_inference_results_by_grader(jsonl_path: Path) -> Tuple[Dict[str, Dict], Dict[str, Dict]]:
|
47 |
"""
|
48 |
+
Load predictions and labels from the inference results JSONL file, organized by grader.
|
49 |
|
50 |
Returns:
|
51 |
+
grader_a_data: Dictionary mapping essay_id to {'prediction': score, 'label': label}
|
52 |
+
grader_b_data: Dictionary mapping essay_id to {'prediction': score, 'label': label}
|
53 |
"""
|
54 |
+
grader_a_data = {}
|
55 |
+
grader_b_data = {}
|
56 |
|
57 |
with open(jsonl_path, 'r', encoding='utf-8') as f:
|
58 |
for line in f:
|
59 |
data = json.loads(line.strip())
|
60 |
+
essay_id = (data['id'], data['id_prompt'], data['essay_text'])
|
61 |
+
|
62 |
+
essay_data = {
|
63 |
+
'prediction': data['pontuacao'],
|
64 |
+
'label': data['label']
|
65 |
+
}
|
66 |
+
|
67 |
+
if data['reference'] == 'grader_a':
|
68 |
+
grader_a_data[essay_id] = essay_data
|
69 |
+
elif data['reference'] == 'grader_b':
|
70 |
+
grader_b_data[essay_id] = essay_data
|
71 |
+
assert len(grader_a_data) == len(grader_b_data), "Mismatch in number of essays graded by A and B"
|
72 |
+
return grader_a_data, grader_b_data
|
73 |
|
74 |
|
75 |
+
def compute_bootstrap_confidence_intervals_two_graders(
|
76 |
+
grader_a_data: Dict[str, Dict],
|
77 |
+
grader_b_data: Dict[str, Dict],
|
78 |
metrics_to_compute: List[str],
|
79 |
cfg: DictConfig,
|
80 |
n_bootstrap: int = 1000,
|
|
|
82 |
random_state: int = 42,
|
83 |
) -> Dict[str, Tuple[float, float, float]]:
|
84 |
"""
|
85 |
+
Compute bootstrap confidence intervals for specified metrics using two-grader structure.
|
86 |
+
|
87 |
+
For each bootstrap sample:
|
88 |
+
1. Sample essay IDs with replacement
|
89 |
+
2. For each sampled essay ID, get both grader A and grader B predictions/labels
|
90 |
+
3. Compute metrics separately for grader A and grader B
|
91 |
+
4. Take the mean of the two grader metrics
|
92 |
|
93 |
Parameters:
|
94 |
+
grader_a_data: Dictionary mapping essay_id to prediction/label for grader A
|
95 |
+
grader_b_data: Dictionary mapping essay_id to prediction/label for grader B
|
96 |
metrics_to_compute: List of metric names to compute CIs for
|
97 |
cfg: Configuration object
|
98 |
n_bootstrap: Number of bootstrap samples
|
|
|
105 |
if random_state is not None:
|
106 |
np.random.seed(random_state)
|
107 |
|
108 |
+
# Get common essay IDs (should be the same for both graders)
|
109 |
+
essay_ids = list(grader_a_data.keys())
|
110 |
+
assert set(essay_ids) == set(grader_b_data.keys()), "Essay IDs don't match between graders"
|
111 |
+
|
112 |
+
n_essays = len(essay_ids)
|
113 |
bootstrap_metrics = {metric: [] for metric in metrics_to_compute}
|
114 |
|
115 |
# Perform bootstrap sampling
|
116 |
for _ in tqdm(range(n_bootstrap), desc="Performing Bootstrap samples"):
|
117 |
+
# Sample indices with replacement
|
118 |
+
sampled_indices = np.random.choice(n_essays, size=n_essays, replace=True)
|
119 |
+
|
120 |
+
# Collect predictions and labels for both graders
|
121 |
+
grader_a_predictions = []
|
122 |
+
grader_a_labels = []
|
123 |
+
grader_b_predictions = []
|
124 |
+
grader_b_labels = []
|
125 |
|
126 |
+
for idx in sampled_indices:
|
127 |
+
essay_id = essay_ids[idx]
|
128 |
+
grader_a_predictions.append(grader_a_data[essay_id]['prediction'])
|
129 |
+
grader_a_labels.append(grader_a_data[essay_id]['label'])
|
130 |
+
grader_b_predictions.append(grader_b_data[essay_id]['prediction'])
|
131 |
+
grader_b_labels.append(grader_b_data[essay_id]['label'])
|
132 |
|
133 |
+
# Convert to numpy arrays
|
134 |
+
grader_a_predictions = np.array(grader_a_predictions)
|
135 |
+
grader_a_labels = np.array(grader_a_labels)
|
136 |
+
grader_b_predictions = np.array(grader_b_predictions)
|
137 |
+
grader_b_labels = np.array(grader_b_labels)
|
138 |
+
|
139 |
+
# Compute metrics for each grader
|
140 |
+
metrics_a = compute_metrics((grader_a_predictions, grader_a_labels), cfg)
|
141 |
+
metrics_b = compute_metrics((grader_b_predictions, grader_b_labels), cfg)
|
142 |
+
|
143 |
+
# Compute mean of the two grader metrics
|
144 |
for metric in metrics_to_compute:
|
145 |
+
if metric in metrics_a and metric in metrics_b:
|
146 |
+
mean_metric = (metrics_a[metric] + metrics_b[metric]) / 2
|
147 |
+
bootstrap_metrics[metric].append(mean_metric)
|
148 |
|
149 |
# Calculate confidence intervals
|
150 |
alpha = 1 - confidence_level
|
|
|
206 |
--confidence-level 0.99
|
207 |
"""
|
208 |
parser = argparse.ArgumentParser(
|
209 |
+
description='Compute bootstrap confidence intervals for API model inference results with two-grader structure'
|
210 |
)
|
211 |
parser.add_argument(
|
212 |
'experiment_dir',
|
|
|
273 |
except Exception as e:
|
274 |
raise RuntimeError(f"Failed to extract configuration from log file: {e}")
|
275 |
|
276 |
+
# Load predictions and labels by grader
|
277 |
+
grader_a_data, grader_b_data = load_inference_results_by_grader(results_path)
|
278 |
+
print(f"Loaded {len(grader_a_data)} essays with data from both graders")
|
279 |
|
280 |
+
# Compute bootstrap confidence intervals with two-grader structure
|
281 |
+
ci_results = compute_bootstrap_confidence_intervals_two_graders(
|
282 |
+
grader_a_data=grader_a_data,
|
283 |
+
grader_b_data=grader_b_data,
|
284 |
metrics_to_compute=args.metrics,
|
285 |
cfg=cfg,
|
286 |
n_bootstrap=args.n_bootstrap,
|
|
|
288 |
random_state=seed,
|
289 |
)
|
290 |
|
291 |
+
# Also compute metrics for the full dataset (without bootstrap) for reference
|
292 |
+
all_predictions_a = np.array([data['prediction'] for data in grader_a_data.values()])
|
293 |
+
all_labels_a = np.array([data['label'] for data in grader_a_data.values()])
|
294 |
+
all_predictions_b = np.array([data['prediction'] for data in grader_b_data.values()])
|
295 |
+
all_labels_b = np.array([data['label'] for data in grader_b_data.values()])
|
296 |
+
|
297 |
+
metrics_full_a = compute_metrics((all_predictions_a, all_labels_a), cfg)
|
298 |
+
metrics_full_b = compute_metrics((all_predictions_b, all_labels_b), cfg)
|
299 |
+
|
300 |
+
print("\nFull Dataset Metrics:")
|
301 |
+
print(" Grader A:")
|
302 |
+
for metric in args.metrics:
|
303 |
+
if metric in metrics_full_a:
|
304 |
+
print(f" {metric}: {metrics_full_a[metric]:.4f}")
|
305 |
+
print(" Grader B:")
|
306 |
+
for metric in args.metrics:
|
307 |
+
if metric in metrics_full_b:
|
308 |
+
print(f" {metric}: {metrics_full_b[metric]:.4f}")
|
309 |
+
print(" Mean (A+B)/2:")
|
310 |
+
for metric in args.metrics:
|
311 |
+
if metric in metrics_full_a and metric in metrics_full_b:
|
312 |
+
mean_val = (metrics_full_a[metric] + metrics_full_b[metric]) / 2
|
313 |
+
print(f" {metric}: {mean_val:.4f}")
|
314 |
+
|
315 |
+
# Display bootstrap results
|
316 |
+
print(f"\nBootstrap Confidence Intervals ({args.confidence_level*100:.0f}%):")
|
317 |
+
print(" (Based on mean of grader A and B metrics)")
|
318 |
for metric, (mean_val, lower, upper) in ci_results.items():
|
319 |
print(f" {metric}: {mean_val:.4f} [{lower:.4f}, {upper:.4f}]")
|
320 |
|
321 |
# Save results
|
322 |
+
output_path = exp_dir / "bootstrap_confidence_intervals.csv"
|
323 |
save_results_to_csv(experiment_id, ci_results, output_path)
|
324 |
|
325 |
|
runs/api_models/deepseek-r1/deepseek-reasoner-zero-shot-C1/bootstrap_confidence_intervals.csv
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
-
deepseek-reasoner-zero-shot-C1,2025-06-30
|
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
+
deepseek-reasoner-zero-shot-C1,2025-06-30 19:24:13,0.5031813172396491,0.39612234405215646,0.6029211931389544,0.20679884908679796,0.2274033422818625,0.1601275797791265,0.30359755990743703,0.14346998012831053,0.4095234288772193,0.31337848309417465,0.5061183175473122,0.19273983445313753
|
runs/api_models/deepseek-r1/deepseek-reasoner-zero-shot-C2/bootstrap_confidence_intervals.csv
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
-
deepseek-reasoner-zero-shot-C2,2025-06-30
|
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
+
deepseek-reasoner-zero-shot-C2,2025-06-30 19:25:29,0.015085628670856775,-0.01609536786795569,0.052453535386255155,0.06854890325421084,0.07182213834437161,0.011318407960199004,0.13775287212787207,0.12643446416767307,0.06959656298664449,0.012077294685990336,0.14131656764438613,0.1292392729583958
|
runs/api_models/deepseek-r1/deepseek-reasoner-zero-shot-C3/bootstrap_confidence_intervals.csv
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
-
deepseek-reasoner-zero-shot-C3,2025-06-30
|
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
+
deepseek-reasoner-zero-shot-C3,2025-06-30 19:26:47,0.41836228230962436,0.2489692256251884,0.5721549000685506,0.3231856744433622,0.2508176762202804,0.19202954797363142,0.31841585804142564,0.12638631006779422,0.3489492834022517,0.26249349858090687,0.4409494892377097,0.17845599065680284
|
runs/api_models/deepseek-r1/deepseek-reasoner-zero-shot-C4/bootstrap_confidence_intervals.csv
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
-
deepseek-reasoner-zero-shot-C4,2025-06-30
|
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
+
deepseek-reasoner-zero-shot-C4,2025-06-30 19:28:03,0.38116513528991663,0.2524444433299289,0.4995197940323231,0.24707535070239423,0.18445354750863818,0.12960402116931058,0.2520732864669916,0.12246926529768104,0.3717237598742471,0.2708849808787627,0.47315576881465315,0.20227078793589043
|
runs/api_models/deepseek-r1/deepseek-reasoner-zero-shot-C5/bootstrap_confidence_intervals.csv
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
-
deepseek-reasoner-zero-shot-C5,2025-06-30
|
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
+
deepseek-reasoner-zero-shot-C5,2025-06-30 19:29:20,0.5044185730458359,0.3386976025293209,0.6493071919406782,0.3106095894113573,0.2750475967576382,0.19692221304008536,0.35612601878145045,0.15920380574136508,0.34002870708452154,0.24892362385780695,0.4303997744623871,0.18147615060458014
|
runs/api_models/gpt-4o/gpt-4o-2024-11-20-zero-shot-C1/bootstrap_confidence_intervals.csv
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
-
gpt-4o-2024-11-20-zero-shot-C1,2025-06-30
|
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
+
gpt-4o-2024-11-20-zero-shot-C1,2025-06-30 19:17:49,0.48433658533825436,0.3938363183140824,0.5711858066254478,0.17734948831136543,0.22518881129681048,0.16630298512225883,0.2878183259188317,0.12151534079657289,0.4300958775306066,0.3296266094763709,0.5319377997290938,0.20231119025272293
|
runs/api_models/gpt-4o/gpt-4o-2024-11-20-zero-shot-C2/bootstrap_confidence_intervals.csv
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
-
gpt-4o-2024-11-20-zero-shot-C2,2025-06-30
|
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
+
gpt-4o-2024-11-20-zero-shot-C2,2025-06-30 19:19:06,0.2057111902943848,0.0156862847643509,0.3869618990819648,0.3712756143176139,0.15361878269998214,0.09770302074727197,0.21631382644102345,0.11861080569375149,0.2219144484635966,0.1413571234157044,0.30646439739268355,0.16510727397697916
|
runs/api_models/gpt-4o/gpt-4o-2024-11-20-zero-shot-C3/bootstrap_confidence_intervals.csv
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
-
gpt-4o-2024-11-20-zero-shot-C3,2025-06-30
|
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
+
gpt-4o-2024-11-20-zero-shot-C3,2025-06-30 19:20:22,0.3840952652326012,0.20135412416730708,0.5521159645854775,0.35076184041817043,0.24817043489029247,0.1736164217858921,0.32927018371031214,0.15565376192442004,0.2805536033062157,0.19552156653388297,0.36858673687915616,0.1730651703452732
|
runs/api_models/gpt-4o/gpt-4o-2024-11-20-zero-shot-C4/bootstrap_confidence_intervals.csv
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
-
gpt-4o-2024-11-20-zero-shot-C4,2025-06-30
|
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
+
gpt-4o-2024-11-20-zero-shot-C4,2025-06-30 19:21:39,0.5089531567133179,0.3888031492362075,0.6152417779964572,0.22643862876024967,0.28852928653851234,0.18681228454562476,0.3824251224257857,0.19561283788016093,0.3902781779473028,0.2826152500998546,0.49870073612105204,0.21608548602119743
|
runs/api_models/gpt-4o/gpt-4o-2024-11-20-zero-shot-C5/bootstrap_confidence_intervals.csv
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
-
gpt-4o-2024-11-20-zero-shot-C5,2025-06-30
|
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
+
gpt-4o-2024-11-20-zero-shot-C5,2025-06-30 19:22:56,0.5394873809979558,0.3575120262106833,0.698971508885962,0.34145948267527876,0.2658013896856878,0.20354630700238951,0.3238312656226109,0.12028495862022137,0.2925305547803538,0.20843460191112617,0.38070279562069903,0.17226819370957286
|
runs/api_models/sabia-3/sabia-3-zero-shot-C1/bootstrap_confidence_intervals.csv
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
-
sabia-3-zero-shot-C1,2025-06-30
|
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
+
sabia-3-zero-shot-C1,2025-06-30 19:11:26,0.6758141520978987,0.5821561906848018,0.7574582527396938,0.17530206205489196,0.347325574090326,0.2672238537073168,0.45622434106717363,0.1890004873598568,0.6477251551391441,0.5570079559770961,0.7353169437026666,0.17830898772557058
|
runs/api_models/sabia-3/sabia-3-zero-shot-C2/bootstrap_confidence_intervals.csv
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
-
sabia-3-zero-shot-C2,2025-06-30
|
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
+
sabia-3-zero-shot-C2,2025-06-30 19:12:42,0.028512195484997012,-0.030817136956953983,0.08987572236215731,0.12069285931911129,0.08821109362412456,0.03657240950873027,0.15393705068531627,0.11736464117658599,0.09941741515103789,0.03854145956316684,0.1757644223312846,0.13722296276811774
|
runs/api_models/sabia-3/sabia-3-zero-shot-C3/bootstrap_confidence_intervals.csv
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
-
sabia-3-zero-shot-C3,2025-06-30
|
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
+
sabia-3-zero-shot-C3,2025-06-30 19:13:59,0.32252754287380525,0.1419556961526131,0.4922296040905474,0.3502739079379343,0.21004968949354197,0.1469750587962625,0.2809477206064128,0.13397266181015033,0.3011921097511097,0.2194068220641772,0.3865792849068527,0.16717246284267553
|
runs/api_models/sabia-3/sabia-3-zero-shot-C4/bootstrap_confidence_intervals.csv
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
-
sabia-3-zero-shot-C4,2025-06-30 15:
|
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
+
sabia-3-zero-shot-C4,2025-06-30 19:15:16,0.4644634004271149,0.30569116709717425,0.6074495907906716,0.30175842369349737,0.2767955968709957,0.18925636717607686,0.3717433634379734,0.18248699626189652,0.5163666279003479,0.4031141694720424,0.6250066983091925,0.2218925288371501
|
runs/api_models/sabia-3/sabia-3-zero-shot-C5/bootstrap_confidence_intervals.csv
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
-
sabia-3-zero-shot-C5,2025-06-30
|
|
|
1 |
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
+
sabia-3-zero-shot-C5,2025-06-30 19:16:33,0.5392831394260602,0.35046363402046493,0.7055545310294663,0.35509089700900137,0.36099722283776575,0.28393184893449175,0.4381994677690793,0.15426761883458756,0.43190209919436773,0.33418961241763373,0.5281077284227921,0.19391811600515835
|
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C1-encoder_classification-C1 → jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only}/.hydra/config.yaml
RENAMED
@@ -30,6 +30,7 @@ experiments:
|
|
30 |
name: neuralmind/bert-base-portuguese-cased
|
31 |
dataset:
|
32 |
grade_index: 0
|
|
|
33 |
training_params:
|
34 |
weight_decay: 0.01
|
35 |
warmup_ratio: 0.1
|
|
|
30 |
name: neuralmind/bert-base-portuguese-cased
|
31 |
dataset:
|
32 |
grade_index: 0
|
33 |
+
use_full_context: false
|
34 |
training_params:
|
35 |
weight_decay: 0.01
|
36 |
warmup_ratio: 0.1
|
runs/base_models/{mbert/jbcs2025_mbert_base-C1-encoder_classification-C1 → bertimbau/jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only}/.hydra/hydra.yaml
RENAMED
@@ -130,18 +130,18 @@ hydra:
|
|
130 |
runtime:
|
131 |
version: 1.3.2
|
132 |
version_base: '1.1'
|
133 |
-
cwd: /
|
134 |
config_sources:
|
135 |
- path: hydra.conf
|
136 |
schema: pkg
|
137 |
provider: hydra
|
138 |
-
- path: /
|
139 |
schema: file
|
140 |
provider: main
|
141 |
- path: ''
|
142 |
schema: structured
|
143 |
provider: schema
|
144 |
-
output_dir: /
|
145 |
choices:
|
146 |
experiments: base_models/C1
|
147 |
hydra/env: default
|
|
|
130 |
runtime:
|
131 |
version: 1.3.2
|
132 |
version_base: '1.1'
|
133 |
+
cwd: /workspace/jbcs2025
|
134 |
config_sources:
|
135 |
- path: hydra.conf
|
136 |
schema: pkg
|
137 |
provider: hydra
|
138 |
+
- path: /workspace/jbcs2025/configs
|
139 |
schema: file
|
140 |
provider: main
|
141 |
- path: ''
|
142 |
schema: structured
|
143 |
provider: schema
|
144 |
+
output_dir: /workspace/jbcs2025/outputs/2025-06-30/23-51-41
|
145 |
choices:
|
146 |
experiments: base_models/C1
|
147 |
hydra/env: default
|
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C1-encoder_classification-C1 → jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only}/.hydra/overrides.yaml
RENAMED
File without changes
|
runs/base_models/bertimbau/jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only/bootstrap_confidence_intervals.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
+
jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only,2025-06-30 23:51:41,0.6726698793738349,0.5786694701512399,0.7587417074110893,0.18007223725984933,0.4756728951042896,0.36004609141863914,0.6232464233862081,0.2632003319675689,0.6413009122974154,0.556374600523932,0.7241688998827073,0.16779429935877532
|
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C1-encoder_classification-C1 → jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only}/evaluation_results.csv
RENAMED
@@ -1,2 +1,2 @@
|
|
1 |
accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
|
2 |
-
0.644927536231884,26.37521893583148,0.6742722265932337,0.007246376811594235,0.44138845418188133,0.644927536231884,0.6413771139990777,0,137,0,1,0,138,0,0,5,123,5,5,56,52,20,10,22,79,8,29,6,112,16,4,2025-06-
|
|
|
1 |
accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
|
2 |
+
0.644927536231884,26.37521893583148,0.6742722265932337,0.007246376811594235,0.44138845418188133,0.644927536231884,0.6413771139990777,0,137,0,1,0,138,0,0,5,123,5,5,56,52,20,10,22,79,8,29,6,112,16,4,2025-06-30 23:51:41,jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only
|
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C1-encoder_classification-C1/jbcs2025_bertimbau_base-C1-encoder_classification-C1_inference_results.jsonl → jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only/jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only_inference_results.jsonl}
RENAMED
File without changes
|
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C1-encoder_classification-C1 → jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only}/run_inference_experiment.log
RENAMED
@@ -1,5 +1,5 @@
|
|
1 |
-
[2025-06-
|
2 |
-
[2025-06-
|
3 |
dataset:
|
4 |
name: kamel-usp/aes_enem_dataset
|
5 |
split: JBCS2025
|
@@ -31,6 +31,7 @@ experiments:
|
|
31 |
name: neuralmind/bert-base-portuguese-cased
|
32 |
dataset:
|
33 |
grade_index: 0
|
|
|
34 |
training_params:
|
35 |
weight_decay: 0.01
|
36 |
warmup_ratio: 0.1
|
@@ -40,9 +41,9 @@ experiments:
|
|
40 |
gradient_accumulation_steps: 1
|
41 |
gradient_checkpointing: false
|
42 |
|
43 |
-
[2025-06-
|
44 |
-
[2025-06-
|
45 |
-
[2025-06-
|
46 |
"architectures": [
|
47 |
"BertForMaskedLM"
|
48 |
],
|
@@ -67,20 +68,20 @@ experiments:
|
|
67 |
"pooler_size_per_head": 128,
|
68 |
"pooler_type": "first_token_transform",
|
69 |
"position_embedding_type": "absolute",
|
70 |
-
"transformers_version": "4.
|
71 |
"type_vocab_size": 2,
|
72 |
"use_cache": true,
|
73 |
"vocab_size": 29794
|
74 |
}
|
75 |
|
76 |
-
[2025-06-
|
77 |
-
[2025-06-
|
78 |
-
[2025-06-
|
79 |
-
[2025-06-
|
80 |
-
[2025-06-
|
81 |
-
[2025-06-
|
82 |
-
[2025-06-
|
83 |
-
[2025-06-
|
84 |
"architectures": [
|
85 |
"BertForMaskedLM"
|
86 |
],
|
@@ -105,14 +106,14 @@ experiments:
|
|
105 |
"pooler_size_per_head": 128,
|
106 |
"pooler_type": "first_token_transform",
|
107 |
"position_embedding_type": "absolute",
|
108 |
-
"transformers_version": "4.
|
109 |
"type_vocab_size": 2,
|
110 |
"use_cache": true,
|
111 |
"vocab_size": 29794
|
112 |
}
|
113 |
|
114 |
-
[2025-06-
|
115 |
-
[2025-06-
|
116 |
"architectures": [
|
117 |
"BertForMaskedLM"
|
118 |
],
|
@@ -137,16 +138,18 @@ experiments:
|
|
137 |
"pooler_size_per_head": 128,
|
138 |
"pooler_type": "first_token_transform",
|
139 |
"position_embedding_type": "absolute",
|
140 |
-
"transformers_version": "4.
|
141 |
"type_vocab_size": 2,
|
142 |
"use_cache": true,
|
143 |
"vocab_size": 29794
|
144 |
}
|
145 |
|
146 |
-
[2025-06-
|
147 |
-
[2025-06-
|
148 |
-
[2025-06-
|
149 |
-
[2025-06-
|
|
|
|
|
150 |
"architectures": [
|
151 |
"BertForSequenceClassification"
|
152 |
],
|
@@ -189,35 +192,35 @@ experiments:
|
|
189 |
"position_embedding_type": "absolute",
|
190 |
"problem_type": "single_label_classification",
|
191 |
"torch_dtype": "float32",
|
192 |
-
"transformers_version": "4.
|
193 |
"type_vocab_size": 2,
|
194 |
"use_cache": true,
|
195 |
"vocab_size": 29794
|
196 |
}
|
197 |
|
198 |
-
[2025-06-
|
199 |
-
[2025-06-
|
200 |
-
[2025-06-
|
201 |
-
[2025-06-
|
202 |
|
203 |
-
[2025-06-
|
204 |
If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
|
205 |
-
[2025-06-
|
206 |
-
[2025-06-
|
207 |
-
[2025-06-
|
208 |
-
[2025-06-
|
209 |
-
[2025-06-
|
210 |
-
[2025-06-
|
211 |
-
[2025-06-
|
212 |
***** Running Prediction *****
|
213 |
-
[2025-06-
|
214 |
-
[2025-06-
|
215 |
-
[2025-06-
|
216 |
-
[2025-06-
|
217 |
-
[2025-06-
|
218 |
-
[2025-06-
|
219 |
-
[2025-06-
|
220 |
-
[2025-06-
|
221 |
-
[2025-06-
|
222 |
-
[2025-06-
|
223 |
-
[2025-06-
|
|
|
1 |
+
[2025-06-30 23:51:41,386][__main__][INFO] - Starting inference experiment
|
2 |
+
[2025-06-30 23:51:41,387][__main__][INFO] - cache_dir: /tmp/
|
3 |
dataset:
|
4 |
name: kamel-usp/aes_enem_dataset
|
5 |
split: JBCS2025
|
|
|
31 |
name: neuralmind/bert-base-portuguese-cased
|
32 |
dataset:
|
33 |
grade_index: 0
|
34 |
+
use_full_context: false
|
35 |
training_params:
|
36 |
weight_decay: 0.01
|
37 |
warmup_ratio: 0.1
|
|
|
41 |
gradient_accumulation_steps: 1
|
42 |
gradient_checkpointing: false
|
43 |
|
44 |
+
[2025-06-30 23:51:41,389][__main__][INFO] - Running inference with fine-tuned HF model
|
45 |
+
[2025-06-30 23:51:46,517][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
|
46 |
+
[2025-06-30 23:51:46,518][transformers.configuration_utils][INFO] - Model config BertConfig {
|
47 |
"architectures": [
|
48 |
"BertForMaskedLM"
|
49 |
],
|
|
|
68 |
"pooler_size_per_head": 128,
|
69 |
"pooler_type": "first_token_transform",
|
70 |
"position_embedding_type": "absolute",
|
71 |
+
"transformers_version": "4.53.0",
|
72 |
"type_vocab_size": 2,
|
73 |
"use_cache": true,
|
74 |
"vocab_size": 29794
|
75 |
}
|
76 |
|
77 |
+
[2025-06-30 23:51:46,722][transformers.tokenization_utils_base][INFO] - loading file vocab.txt from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/vocab.txt
|
78 |
+
[2025-06-30 23:51:46,722][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at None
|
79 |
+
[2025-06-30 23:51:46,722][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/added_tokens.json
|
80 |
+
[2025-06-30 23:51:46,722][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/special_tokens_map.json
|
81 |
+
[2025-06-30 23:51:46,722][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/tokenizer_config.json
|
82 |
+
[2025-06-30 23:51:46,722][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
|
83 |
+
[2025-06-30 23:51:46,722][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
|
84 |
+
[2025-06-30 23:51:46,723][transformers.configuration_utils][INFO] - Model config BertConfig {
|
85 |
"architectures": [
|
86 |
"BertForMaskedLM"
|
87 |
],
|
|
|
106 |
"pooler_size_per_head": 128,
|
107 |
"pooler_type": "first_token_transform",
|
108 |
"position_embedding_type": "absolute",
|
109 |
+
"transformers_version": "4.53.0",
|
110 |
"type_vocab_size": 2,
|
111 |
"use_cache": true,
|
112 |
"vocab_size": 29794
|
113 |
}
|
114 |
|
115 |
+
[2025-06-30 23:51:46,749][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
|
116 |
+
[2025-06-30 23:51:46,749][transformers.configuration_utils][INFO] - Model config BertConfig {
|
117 |
"architectures": [
|
118 |
"BertForMaskedLM"
|
119 |
],
|
|
|
138 |
"pooler_size_per_head": 128,
|
139 |
"pooler_type": "first_token_transform",
|
140 |
"position_embedding_type": "absolute",
|
141 |
+
"transformers_version": "4.53.0",
|
142 |
"type_vocab_size": 2,
|
143 |
"use_cache": true,
|
144 |
"vocab_size": 29794
|
145 |
}
|
146 |
|
147 |
+
[2025-06-30 23:51:46,765][__main__][INFO] - Tokenizer function parameters- Padding:max_length; Truncation: True; Use Full Context: False
|
148 |
+
[2025-06-30 23:51:46,816][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau_base-C1
|
149 |
+
[2025-06-30 23:51:46,816][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau_base-C1
|
150 |
+
[2025-06-30 23:51:47,523][__main__][INFO] - Model need ≈ 1.36 GiB to run inference and 2.58 for training
|
151 |
+
[2025-06-30 23:51:47,758][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau_base-C1/snapshots/1ad2e0f61009276ce3c1d23b24b6f55e0eb102d8/config.json
|
152 |
+
[2025-06-30 23:51:47,758][transformers.configuration_utils][INFO] - Model config BertConfig {
|
153 |
"architectures": [
|
154 |
"BertForSequenceClassification"
|
155 |
],
|
|
|
192 |
"position_embedding_type": "absolute",
|
193 |
"problem_type": "single_label_classification",
|
194 |
"torch_dtype": "float32",
|
195 |
+
"transformers_version": "4.53.0",
|
196 |
"type_vocab_size": 2,
|
197 |
"use_cache": true,
|
198 |
"vocab_size": 29794
|
199 |
}
|
200 |
|
201 |
+
[2025-06-30 23:51:47,903][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau_base-C1/snapshots/1ad2e0f61009276ce3c1d23b24b6f55e0eb102d8/model.safetensors
|
202 |
+
[2025-06-30 23:51:47,903][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
|
203 |
+
[2025-06-30 23:51:47,903][transformers.modeling_utils][INFO] - Instantiating BertForSequenceClassification model under default dtype torch.float32.
|
204 |
+
[2025-06-30 23:51:48,334][transformers.modeling_utils][INFO] - All model checkpoint weights were used when initializing BertForSequenceClassification.
|
205 |
|
206 |
+
[2025-06-30 23:51:48,334][transformers.modeling_utils][INFO] - All the weights of BertForSequenceClassification were initialized from the model checkpoint at kamel-usp/jbcs2025_bertimbau_base-C1.
|
207 |
If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
|
208 |
+
[2025-06-30 23:51:48,339][transformers.training_args][INFO] - PyTorch: setting up devices
|
209 |
+
[2025-06-30 23:51:48,372][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
|
210 |
+
[2025-06-30 23:51:48,376][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
|
211 |
+
[2025-06-30 23:51:48,396][transformers.trainer][INFO] - Using auto half precision backend
|
212 |
+
[2025-06-30 23:51:51,813][__main__][INFO] - Running inference on test dataset
|
213 |
+
[2025-06-30 23:51:51,814][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: supporting_text, prompt, grades, reference, essay_text, essay_year, id, id_prompt. If supporting_text, prompt, grades, reference, essay_text, essay_year, id, id_prompt are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.
|
214 |
+
[2025-06-30 23:51:51,818][transformers.trainer][INFO] -
|
215 |
***** Running Prediction *****
|
216 |
+
[2025-06-30 23:51:51,818][transformers.trainer][INFO] - Num examples = 138
|
217 |
+
[2025-06-30 23:51:51,818][transformers.trainer][INFO] - Batch size = 16
|
218 |
+
[2025-06-30 23:51:52,209][__main__][INFO] - Inference results saved to jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only_inference_results.jsonl
|
219 |
+
[2025-06-30 23:51:52,214][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
|
220 |
+
[2025-06-30 23:53:26,617][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
|
221 |
+
[2025-06-30 23:53:26,617][__main__][INFO] - Bootstrap Confidence Intervals (95%):
|
222 |
+
[2025-06-30 23:53:26,617][__main__][INFO] - QWK: 0.6727 [0.5787, 0.7587]
|
223 |
+
[2025-06-30 23:53:26,617][__main__][INFO] - Macro_F1: 0.4757 [0.3600, 0.6232]
|
224 |
+
[2025-06-30 23:53:26,617][__main__][INFO] - Weighted_F1: 0.6413 [0.5564, 0.7242]
|
225 |
+
[2025-06-30 23:53:26,617][__main__][INFO] - Inference results: {'accuracy': 0.644927536231884, 'RMSE': 26.37521893583148, 'QWK': 0.6742722265932337, 'HDIV': 0.007246376811594235, 'Macro_F1': 0.44138845418188133, 'Micro_F1': 0.644927536231884, 'Weighted_F1': 0.6413771139990777, 'TP_0': np.int64(0), 'TN_0': np.int64(137), 'FP_0': np.int64(0), 'FN_0': np.int64(1), 'TP_1': np.int64(0), 'TN_1': np.int64(138), 'FP_1': np.int64(0), 'FN_1': np.int64(0), 'TP_2': np.int64(5), 'TN_2': np.int64(123), 'FP_2': np.int64(5), 'FN_2': np.int64(5), 'TP_3': np.int64(56), 'TN_3': np.int64(52), 'FP_3': np.int64(20), 'FN_3': np.int64(10), 'TP_4': np.int64(22), 'TN_4': np.int64(79), 'FP_4': np.int64(8), 'FN_4': np.int64(29), 'TP_5': np.int64(6), 'TN_5': np.int64(112), 'FP_5': np.int64(16), 'FN_5': np.int64(4)}
|
226 |
+
[2025-06-30 23:53:26,617][__main__][INFO] - Inference experiment completed
|
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C2-encoder_classification-C2 → jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only}/.hydra/config.yaml
RENAMED
@@ -30,6 +30,7 @@ experiments:
|
|
30 |
name: neuralmind/bert-base-portuguese-cased
|
31 |
dataset:
|
32 |
grade_index: 1
|
|
|
33 |
training_params:
|
34 |
weight_decay: 0.01
|
35 |
warmup_ratio: 0.1
|
|
|
30 |
name: neuralmind/bert-base-portuguese-cased
|
31 |
dataset:
|
32 |
grade_index: 1
|
33 |
+
use_full_context: false
|
34 |
training_params:
|
35 |
weight_decay: 0.01
|
36 |
warmup_ratio: 0.1
|
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C2-encoder_classification-C2 → jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only}/.hydra/hydra.yaml
RENAMED
@@ -130,18 +130,18 @@ hydra:
|
|
130 |
runtime:
|
131 |
version: 1.3.2
|
132 |
version_base: '1.1'
|
133 |
-
cwd: /
|
134 |
config_sources:
|
135 |
- path: hydra.conf
|
136 |
schema: pkg
|
137 |
provider: hydra
|
138 |
-
- path: /
|
139 |
schema: file
|
140 |
provider: main
|
141 |
- path: ''
|
142 |
schema: structured
|
143 |
provider: schema
|
144 |
-
output_dir: /
|
145 |
choices:
|
146 |
experiments: base_models/C2
|
147 |
hydra/env: default
|
|
|
130 |
runtime:
|
131 |
version: 1.3.2
|
132 |
version_base: '1.1'
|
133 |
+
cwd: /workspace/jbcs2025
|
134 |
config_sources:
|
135 |
- path: hydra.conf
|
136 |
schema: pkg
|
137 |
provider: hydra
|
138 |
+
- path: /workspace/jbcs2025/configs
|
139 |
schema: file
|
140 |
provider: main
|
141 |
- path: ''
|
142 |
schema: structured
|
143 |
provider: schema
|
144 |
+
output_dir: /workspace/jbcs2025/outputs/2025-06-30/23-53-32
|
145 |
choices:
|
146 |
experiments: base_models/C2
|
147 |
hydra/env: default
|
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C2-encoder_classification-C2 → jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only}/.hydra/overrides.yaml
RENAMED
File without changes
|
runs/base_models/bertimbau/jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only/bootstrap_confidence_intervals.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
+
jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only,2025-06-30 23:53:32,0.41819188204779456,0.27759865754644286,0.5466018786751335,0.2690032211286907,0.29623085261327686,0.21542890620802888,0.3976815226515651,0.18225261644353621,0.3817868369579885,0.2993269590182539,0.46412896590642116,0.16480200688816726
|
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C2-encoder_classification-C2 → jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only}/evaluation_results.csv
RENAMED
@@ -1,2 +1,2 @@
|
|
1 |
accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
|
2 |
-
0.37681159420289856,55.32512598464997,0.4220445459737294,0.06521739130434778,0.2801049472150572,0.37681159420289856,0.38226236003582026,0,137,0,1,13,90,13,22,3,112,21,2,25,56,31,26,5,99,13,21,6,110,8,14,2025-06-
|
|
|
1 |
accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
|
2 |
+
0.37681159420289856,55.32512598464997,0.4220445459737294,0.06521739130434778,0.2801049472150572,0.37681159420289856,0.38226236003582026,0,137,0,1,13,90,13,22,3,112,21,2,25,56,31,26,5,99,13,21,6,110,8,14,2025-06-30 23:53:32,jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only
|
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C2-encoder_classification-C2/jbcs2025_bertimbau_base-C2-encoder_classification-C2_inference_results.jsonl → jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only/jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only_inference_results.jsonl}
RENAMED
File without changes
|
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C2-encoder_classification-C2 → jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only}/run_inference_experiment.log
RENAMED
@@ -1,5 +1,5 @@
|
|
1 |
-
[2025-06-
|
2 |
-
[2025-06-
|
3 |
dataset:
|
4 |
name: kamel-usp/aes_enem_dataset
|
5 |
split: JBCS2025
|
@@ -31,6 +31,7 @@ experiments:
|
|
31 |
name: neuralmind/bert-base-portuguese-cased
|
32 |
dataset:
|
33 |
grade_index: 1
|
|
|
34 |
training_params:
|
35 |
weight_decay: 0.01
|
36 |
warmup_ratio: 0.1
|
@@ -40,9 +41,9 @@ experiments:
|
|
40 |
gradient_accumulation_steps: 1
|
41 |
gradient_checkpointing: false
|
42 |
|
43 |
-
[2025-06-
|
44 |
-
[2025-06-
|
45 |
-
[2025-06-
|
46 |
"architectures": [
|
47 |
"BertForMaskedLM"
|
48 |
],
|
@@ -67,20 +68,20 @@ experiments:
|
|
67 |
"pooler_size_per_head": 128,
|
68 |
"pooler_type": "first_token_transform",
|
69 |
"position_embedding_type": "absolute",
|
70 |
-
"transformers_version": "4.
|
71 |
"type_vocab_size": 2,
|
72 |
"use_cache": true,
|
73 |
"vocab_size": 29794
|
74 |
}
|
75 |
|
76 |
-
[2025-06-
|
77 |
-
[2025-06-
|
78 |
-
[2025-06-
|
79 |
-
[2025-06-
|
80 |
-
[2025-06-
|
81 |
-
[2025-06-
|
82 |
-
[2025-06-
|
83 |
-
[2025-06-
|
84 |
"architectures": [
|
85 |
"BertForMaskedLM"
|
86 |
],
|
@@ -105,14 +106,14 @@ experiments:
|
|
105 |
"pooler_size_per_head": 128,
|
106 |
"pooler_type": "first_token_transform",
|
107 |
"position_embedding_type": "absolute",
|
108 |
-
"transformers_version": "4.
|
109 |
"type_vocab_size": 2,
|
110 |
"use_cache": true,
|
111 |
"vocab_size": 29794
|
112 |
}
|
113 |
|
114 |
-
[2025-06-
|
115 |
-
[2025-06-
|
116 |
"architectures": [
|
117 |
"BertForMaskedLM"
|
118 |
],
|
@@ -137,16 +138,18 @@ experiments:
|
|
137 |
"pooler_size_per_head": 128,
|
138 |
"pooler_type": "first_token_transform",
|
139 |
"position_embedding_type": "absolute",
|
140 |
-
"transformers_version": "4.
|
141 |
"type_vocab_size": 2,
|
142 |
"use_cache": true,
|
143 |
"vocab_size": 29794
|
144 |
}
|
145 |
|
146 |
-
[2025-06-
|
147 |
-
[2025-06-
|
148 |
-
[2025-06-
|
149 |
-
[2025-06-
|
|
|
|
|
150 |
"architectures": [
|
151 |
"BertForSequenceClassification"
|
152 |
],
|
@@ -189,35 +192,35 @@ experiments:
|
|
189 |
"position_embedding_type": "absolute",
|
190 |
"problem_type": "single_label_classification",
|
191 |
"torch_dtype": "float32",
|
192 |
-
"transformers_version": "4.
|
193 |
"type_vocab_size": 2,
|
194 |
"use_cache": true,
|
195 |
"vocab_size": 29794
|
196 |
}
|
197 |
|
198 |
-
[2025-06-
|
199 |
-
[2025-06-
|
200 |
-
[2025-06-
|
201 |
-
[2025-06-
|
202 |
|
203 |
-
[2025-06-
|
204 |
If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
|
205 |
-
[2025-06-
|
206 |
-
[2025-06-
|
207 |
-
[2025-06-
|
208 |
-
[2025-06-
|
209 |
-
[2025-06-
|
210 |
-
[2025-06-
|
211 |
-
[2025-06-
|
212 |
***** Running Prediction *****
|
213 |
-
[2025-06-
|
214 |
-
[2025-06-
|
215 |
-
[2025-06-
|
216 |
-
[2025-06-
|
217 |
-
[2025-06-
|
218 |
-
[2025-06-
|
219 |
-
[2025-06-
|
220 |
-
[2025-06-
|
221 |
-
[2025-06-
|
222 |
-
[2025-06-
|
223 |
-
[2025-06-
|
|
|
1 |
+
[2025-06-30 23:53:32,300][__main__][INFO] - Starting inference experiment
|
2 |
+
[2025-06-30 23:53:32,301][__main__][INFO] - cache_dir: /tmp/
|
3 |
dataset:
|
4 |
name: kamel-usp/aes_enem_dataset
|
5 |
split: JBCS2025
|
|
|
31 |
name: neuralmind/bert-base-portuguese-cased
|
32 |
dataset:
|
33 |
grade_index: 1
|
34 |
+
use_full_context: false
|
35 |
training_params:
|
36 |
weight_decay: 0.01
|
37 |
warmup_ratio: 0.1
|
|
|
41 |
gradient_accumulation_steps: 1
|
42 |
gradient_checkpointing: false
|
43 |
|
44 |
+
[2025-06-30 23:53:32,303][__main__][INFO] - Running inference with fine-tuned HF model
|
45 |
+
[2025-06-30 23:53:37,072][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
|
46 |
+
[2025-06-30 23:53:37,073][transformers.configuration_utils][INFO] - Model config BertConfig {
|
47 |
"architectures": [
|
48 |
"BertForMaskedLM"
|
49 |
],
|
|
|
68 |
"pooler_size_per_head": 128,
|
69 |
"pooler_type": "first_token_transform",
|
70 |
"position_embedding_type": "absolute",
|
71 |
+
"transformers_version": "4.53.0",
|
72 |
"type_vocab_size": 2,
|
73 |
"use_cache": true,
|
74 |
"vocab_size": 29794
|
75 |
}
|
76 |
|
77 |
+
[2025-06-30 23:53:37,279][transformers.tokenization_utils_base][INFO] - loading file vocab.txt from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/vocab.txt
|
78 |
+
[2025-06-30 23:53:37,279][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at None
|
79 |
+
[2025-06-30 23:53:37,279][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/added_tokens.json
|
80 |
+
[2025-06-30 23:53:37,279][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/special_tokens_map.json
|
81 |
+
[2025-06-30 23:53:37,279][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/tokenizer_config.json
|
82 |
+
[2025-06-30 23:53:37,279][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
|
83 |
+
[2025-06-30 23:53:37,279][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
|
84 |
+
[2025-06-30 23:53:37,280][transformers.configuration_utils][INFO] - Model config BertConfig {
|
85 |
"architectures": [
|
86 |
"BertForMaskedLM"
|
87 |
],
|
|
|
106 |
"pooler_size_per_head": 128,
|
107 |
"pooler_type": "first_token_transform",
|
108 |
"position_embedding_type": "absolute",
|
109 |
+
"transformers_version": "4.53.0",
|
110 |
"type_vocab_size": 2,
|
111 |
"use_cache": true,
|
112 |
"vocab_size": 29794
|
113 |
}
|
114 |
|
115 |
+
[2025-06-30 23:53:37,305][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
|
116 |
+
[2025-06-30 23:53:37,305][transformers.configuration_utils][INFO] - Model config BertConfig {
|
117 |
"architectures": [
|
118 |
"BertForMaskedLM"
|
119 |
],
|
|
|
138 |
"pooler_size_per_head": 128,
|
139 |
"pooler_type": "first_token_transform",
|
140 |
"position_embedding_type": "absolute",
|
141 |
+
"transformers_version": "4.53.0",
|
142 |
"type_vocab_size": 2,
|
143 |
"use_cache": true,
|
144 |
"vocab_size": 29794
|
145 |
}
|
146 |
|
147 |
+
[2025-06-30 23:53:37,322][__main__][INFO] - Tokenizer function parameters- Padding:max_length; Truncation: True; Use Full Context: False
|
148 |
+
[2025-06-30 23:53:37,526][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau_base-C2
|
149 |
+
[2025-06-30 23:53:37,526][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau_base-C2
|
150 |
+
[2025-06-30 23:53:38,363][__main__][INFO] - Model need ≈ 1.36 GiB to run inference and 2.58 for training
|
151 |
+
[2025-06-30 23:53:39,154][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau_base-C2/snapshots/3afae7b80c36bf0042b19778620a0ad1135b7135/config.json
|
152 |
+
[2025-06-30 23:53:39,155][transformers.configuration_utils][INFO] - Model config BertConfig {
|
153 |
"architectures": [
|
154 |
"BertForSequenceClassification"
|
155 |
],
|
|
|
192 |
"position_embedding_type": "absolute",
|
193 |
"problem_type": "single_label_classification",
|
194 |
"torch_dtype": "float32",
|
195 |
+
"transformers_version": "4.53.0",
|
196 |
"type_vocab_size": 2,
|
197 |
"use_cache": true,
|
198 |
"vocab_size": 29794
|
199 |
}
|
200 |
|
201 |
+
[2025-06-30 23:53:51,890][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau_base-C2/snapshots/3afae7b80c36bf0042b19778620a0ad1135b7135/model.safetensors
|
202 |
+
[2025-06-30 23:53:51,891][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
|
203 |
+
[2025-06-30 23:53:51,891][transformers.modeling_utils][INFO] - Instantiating BertForSequenceClassification model under default dtype torch.float32.
|
204 |
+
[2025-06-30 23:53:52,245][transformers.modeling_utils][INFO] - All model checkpoint weights were used when initializing BertForSequenceClassification.
|
205 |
|
206 |
+
[2025-06-30 23:53:52,245][transformers.modeling_utils][INFO] - All the weights of BertForSequenceClassification were initialized from the model checkpoint at kamel-usp/jbcs2025_bertimbau_base-C2.
|
207 |
If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
|
208 |
+
[2025-06-30 23:53:52,251][transformers.training_args][INFO] - PyTorch: setting up devices
|
209 |
+
[2025-06-30 23:53:52,307][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
|
210 |
+
[2025-06-30 23:53:52,312][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
|
211 |
+
[2025-06-30 23:53:52,330][transformers.trainer][INFO] - Using auto half precision backend
|
212 |
+
[2025-06-30 23:53:55,801][__main__][INFO] - Running inference on test dataset
|
213 |
+
[2025-06-30 23:53:55,802][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: id, reference, essay_year, supporting_text, prompt, grades, essay_text, id_prompt. If id, reference, essay_year, supporting_text, prompt, grades, essay_text, id_prompt are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.
|
214 |
+
[2025-06-30 23:53:55,806][transformers.trainer][INFO] -
|
215 |
***** Running Prediction *****
|
216 |
+
[2025-06-30 23:53:55,806][transformers.trainer][INFO] - Num examples = 138
|
217 |
+
[2025-06-30 23:53:55,806][transformers.trainer][INFO] - Batch size = 16
|
218 |
+
[2025-06-30 23:53:56,214][__main__][INFO] - Inference results saved to jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only_inference_results.jsonl
|
219 |
+
[2025-06-30 23:53:56,220][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
|
220 |
+
[2025-06-30 23:55:32,845][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
|
221 |
+
[2025-06-30 23:55:32,845][__main__][INFO] - Bootstrap Confidence Intervals (95%):
|
222 |
+
[2025-06-30 23:55:32,845][__main__][INFO] - QWK: 0.4182 [0.2776, 0.5466]
|
223 |
+
[2025-06-30 23:55:32,845][__main__][INFO] - Macro_F1: 0.2962 [0.2154, 0.3977]
|
224 |
+
[2025-06-30 23:55:32,845][__main__][INFO] - Weighted_F1: 0.3818 [0.2993, 0.4641]
|
225 |
+
[2025-06-30 23:55:32,845][__main__][INFO] - Inference results: {'accuracy': 0.37681159420289856, 'RMSE': 55.32512598464997, 'QWK': 0.4220445459737294, 'HDIV': 0.06521739130434778, 'Macro_F1': 0.2801049472150572, 'Micro_F1': 0.37681159420289856, 'Weighted_F1': 0.38226236003582026, 'TP_0': np.int64(0), 'TN_0': np.int64(137), 'FP_0': np.int64(0), 'FN_0': np.int64(1), 'TP_1': np.int64(13), 'TN_1': np.int64(90), 'FP_1': np.int64(13), 'FN_1': np.int64(22), 'TP_2': np.int64(3), 'TN_2': np.int64(112), 'FP_2': np.int64(21), 'FN_2': np.int64(2), 'TP_3': np.int64(25), 'TN_3': np.int64(56), 'FP_3': np.int64(31), 'FN_3': np.int64(26), 'TP_4': np.int64(5), 'TN_4': np.int64(99), 'FP_4': np.int64(13), 'FN_4': np.int64(21), 'TP_5': np.int64(6), 'TN_5': np.int64(110), 'FP_5': np.int64(8), 'FN_5': np.int64(14)}
|
226 |
+
[2025-06-30 23:55:32,845][__main__][INFO] - Inference experiment completed
|
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C3-encoder_classification-C3 → jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only}/.hydra/config.yaml
RENAMED
@@ -30,6 +30,7 @@ experiments:
|
|
30 |
name: neuralmind/bert-base-portuguese-cased
|
31 |
dataset:
|
32 |
grade_index: 2
|
|
|
33 |
training_params:
|
34 |
weight_decay: 0.01
|
35 |
warmup_ratio: 0.1
|
|
|
30 |
name: neuralmind/bert-base-portuguese-cased
|
31 |
dataset:
|
32 |
grade_index: 2
|
33 |
+
use_full_context: false
|
34 |
training_params:
|
35 |
weight_decay: 0.01
|
36 |
warmup_ratio: 0.1
|
runs/base_models/{mbert/jbcs2025_mbert_base-C3-encoder_classification-C3 → bertimbau/jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only}/.hydra/hydra.yaml
RENAMED
@@ -130,18 +130,18 @@ hydra:
|
|
130 |
runtime:
|
131 |
version: 1.3.2
|
132 |
version_base: '1.1'
|
133 |
-
cwd: /
|
134 |
config_sources:
|
135 |
- path: hydra.conf
|
136 |
schema: pkg
|
137 |
provider: hydra
|
138 |
-
- path: /
|
139 |
schema: file
|
140 |
provider: main
|
141 |
- path: ''
|
142 |
schema: structured
|
143 |
provider: schema
|
144 |
-
output_dir: /
|
145 |
choices:
|
146 |
experiments: base_models/C3
|
147 |
hydra/env: default
|
|
|
130 |
runtime:
|
131 |
version: 1.3.2
|
132 |
version_base: '1.1'
|
133 |
+
cwd: /workspace/jbcs2025
|
134 |
config_sources:
|
135 |
- path: hydra.conf
|
136 |
schema: pkg
|
137 |
provider: hydra
|
138 |
+
- path: /workspace/jbcs2025/configs
|
139 |
schema: file
|
140 |
provider: main
|
141 |
- path: ''
|
142 |
schema: structured
|
143 |
provider: schema
|
144 |
+
output_dir: /workspace/jbcs2025/outputs/2025-06-30/23-55-38
|
145 |
choices:
|
146 |
experiments: base_models/C3
|
147 |
hydra/env: default
|
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C3-encoder_classification-C3 → jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only}/.hydra/overrides.yaml
RENAMED
File without changes
|
runs/base_models/bertimbau/jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only/bootstrap_confidence_intervals.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
+
jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only,2025-06-30 23:55:38,0.3442546344979946,0.20848447033589465,0.47933895194622367,0.270854481610329,0.27540748660610137,0.20263838658028993,0.36522069296926984,0.1625823063889799,0.33565410439112764,0.25734749784644845,0.4165551974170723,0.15920769957062386
|
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C3-encoder_classification-C3 → jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only}/evaluation_results.csv
RENAMED
@@ -1,2 +1,2 @@
|
|
1 |
accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
|
2 |
-
0.37681159420289856,52.64042641120627,0.3452054794520547,0.09420289855072461,0.25943499029705924,0.37681159420289856,0.33380294701134283,0,137,0,1,0,109,0,29,13,101,19,5,20,71,22,25,17,67,33,21,2,119,12,5,2025-06-
|
|
|
1 |
accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
|
2 |
+
0.37681159420289856,52.64042641120627,0.3452054794520547,0.09420289855072461,0.25943499029705924,0.37681159420289856,0.33380294701134283,0,137,0,1,0,109,0,29,13,101,19,5,20,71,22,25,17,67,33,21,2,119,12,5,2025-06-30 23:55:38,jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only
|
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C3-encoder_classification-C3/jbcs2025_bertimbau_base-C3-encoder_classification-C3_inference_results.jsonl → jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only/jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only_inference_results.jsonl}
RENAMED
File without changes
|
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C3-encoder_classification-C3 → jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only}/run_inference_experiment.log
RENAMED
@@ -1,5 +1,5 @@
|
|
1 |
-
[2025-06-
|
2 |
-
[2025-06-
|
3 |
dataset:
|
4 |
name: kamel-usp/aes_enem_dataset
|
5 |
split: JBCS2025
|
@@ -31,6 +31,7 @@ experiments:
|
|
31 |
name: neuralmind/bert-base-portuguese-cased
|
32 |
dataset:
|
33 |
grade_index: 2
|
|
|
34 |
training_params:
|
35 |
weight_decay: 0.01
|
36 |
warmup_ratio: 0.1
|
@@ -40,9 +41,9 @@ experiments:
|
|
40 |
gradient_accumulation_steps: 1
|
41 |
gradient_checkpointing: false
|
42 |
|
43 |
-
[2025-06-
|
44 |
-
[2025-06-
|
45 |
-
[2025-06-
|
46 |
"architectures": [
|
47 |
"BertForMaskedLM"
|
48 |
],
|
@@ -67,20 +68,20 @@ experiments:
|
|
67 |
"pooler_size_per_head": 128,
|
68 |
"pooler_type": "first_token_transform",
|
69 |
"position_embedding_type": "absolute",
|
70 |
-
"transformers_version": "4.
|
71 |
"type_vocab_size": 2,
|
72 |
"use_cache": true,
|
73 |
"vocab_size": 29794
|
74 |
}
|
75 |
|
76 |
-
[2025-06-
|
77 |
-
[2025-06-
|
78 |
-
[2025-06-
|
79 |
-
[2025-06-
|
80 |
-
[2025-06-
|
81 |
-
[2025-06-
|
82 |
-
[2025-06-
|
83 |
-
[2025-06-
|
84 |
"architectures": [
|
85 |
"BertForMaskedLM"
|
86 |
],
|
@@ -105,14 +106,14 @@ experiments:
|
|
105 |
"pooler_size_per_head": 128,
|
106 |
"pooler_type": "first_token_transform",
|
107 |
"position_embedding_type": "absolute",
|
108 |
-
"transformers_version": "4.
|
109 |
"type_vocab_size": 2,
|
110 |
"use_cache": true,
|
111 |
"vocab_size": 29794
|
112 |
}
|
113 |
|
114 |
-
[2025-06-
|
115 |
-
[2025-06-
|
116 |
"architectures": [
|
117 |
"BertForMaskedLM"
|
118 |
],
|
@@ -137,16 +138,18 @@ experiments:
|
|
137 |
"pooler_size_per_head": 128,
|
138 |
"pooler_type": "first_token_transform",
|
139 |
"position_embedding_type": "absolute",
|
140 |
-
"transformers_version": "4.
|
141 |
"type_vocab_size": 2,
|
142 |
"use_cache": true,
|
143 |
"vocab_size": 29794
|
144 |
}
|
145 |
|
146 |
-
[2025-06-
|
147 |
-
[2025-06-
|
148 |
-
[2025-06-
|
149 |
-
[2025-06-
|
|
|
|
|
150 |
"architectures": [
|
151 |
"BertForSequenceClassification"
|
152 |
],
|
@@ -189,35 +192,35 @@ experiments:
|
|
189 |
"position_embedding_type": "absolute",
|
190 |
"problem_type": "single_label_classification",
|
191 |
"torch_dtype": "float32",
|
192 |
-
"transformers_version": "4.
|
193 |
"type_vocab_size": 2,
|
194 |
"use_cache": true,
|
195 |
"vocab_size": 29794
|
196 |
}
|
197 |
|
198 |
-
[2025-06-
|
199 |
-
[2025-06-
|
200 |
-
[2025-06-
|
201 |
-
[2025-06-
|
202 |
|
203 |
-
[2025-06-
|
204 |
If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
|
205 |
-
[2025-06-
|
206 |
-
[2025-06-
|
207 |
-
[2025-06-
|
208 |
-
[2025-06-
|
209 |
-
[2025-06-
|
210 |
-
[2025-06-
|
211 |
-
[2025-06-
|
212 |
***** Running Prediction *****
|
213 |
-
[2025-06-
|
214 |
-
[2025-06-
|
215 |
-
[2025-06-
|
216 |
-
[2025-06-
|
217 |
-
[2025-06-
|
218 |
-
[2025-06-
|
219 |
-
[2025-06-
|
220 |
-
[2025-06-
|
221 |
-
[2025-06-
|
222 |
-
[2025-06-
|
223 |
-
[2025-06-
|
|
|
1 |
+
[2025-06-30 23:55:38,582][__main__][INFO] - Starting inference experiment
|
2 |
+
[2025-06-30 23:55:38,583][__main__][INFO] - cache_dir: /tmp/
|
3 |
dataset:
|
4 |
name: kamel-usp/aes_enem_dataset
|
5 |
split: JBCS2025
|
|
|
31 |
name: neuralmind/bert-base-portuguese-cased
|
32 |
dataset:
|
33 |
grade_index: 2
|
34 |
+
use_full_context: false
|
35 |
training_params:
|
36 |
weight_decay: 0.01
|
37 |
warmup_ratio: 0.1
|
|
|
41 |
gradient_accumulation_steps: 1
|
42 |
gradient_checkpointing: false
|
43 |
|
44 |
+
[2025-06-30 23:55:38,585][__main__][INFO] - Running inference with fine-tuned HF model
|
45 |
+
[2025-06-30 23:55:44,174][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
|
46 |
+
[2025-06-30 23:55:44,176][transformers.configuration_utils][INFO] - Model config BertConfig {
|
47 |
"architectures": [
|
48 |
"BertForMaskedLM"
|
49 |
],
|
|
|
68 |
"pooler_size_per_head": 128,
|
69 |
"pooler_type": "first_token_transform",
|
70 |
"position_embedding_type": "absolute",
|
71 |
+
"transformers_version": "4.53.0",
|
72 |
"type_vocab_size": 2,
|
73 |
"use_cache": true,
|
74 |
"vocab_size": 29794
|
75 |
}
|
76 |
|
77 |
+
[2025-06-30 23:55:44,390][transformers.tokenization_utils_base][INFO] - loading file vocab.txt from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/vocab.txt
|
78 |
+
[2025-06-30 23:55:44,390][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at None
|
79 |
+
[2025-06-30 23:55:44,390][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/added_tokens.json
|
80 |
+
[2025-06-30 23:55:44,390][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/special_tokens_map.json
|
81 |
+
[2025-06-30 23:55:44,390][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/tokenizer_config.json
|
82 |
+
[2025-06-30 23:55:44,391][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
|
83 |
+
[2025-06-30 23:55:44,391][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
|
84 |
+
[2025-06-30 23:55:44,391][transformers.configuration_utils][INFO] - Model config BertConfig {
|
85 |
"architectures": [
|
86 |
"BertForMaskedLM"
|
87 |
],
|
|
|
106 |
"pooler_size_per_head": 128,
|
107 |
"pooler_type": "first_token_transform",
|
108 |
"position_embedding_type": "absolute",
|
109 |
+
"transformers_version": "4.53.0",
|
110 |
"type_vocab_size": 2,
|
111 |
"use_cache": true,
|
112 |
"vocab_size": 29794
|
113 |
}
|
114 |
|
115 |
+
[2025-06-30 23:55:44,421][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
|
116 |
+
[2025-06-30 23:55:44,422][transformers.configuration_utils][INFO] - Model config BertConfig {
|
117 |
"architectures": [
|
118 |
"BertForMaskedLM"
|
119 |
],
|
|
|
138 |
"pooler_size_per_head": 128,
|
139 |
"pooler_type": "first_token_transform",
|
140 |
"position_embedding_type": "absolute",
|
141 |
+
"transformers_version": "4.53.0",
|
142 |
"type_vocab_size": 2,
|
143 |
"use_cache": true,
|
144 |
"vocab_size": 29794
|
145 |
}
|
146 |
|
147 |
+
[2025-06-30 23:55:44,438][__main__][INFO] - Tokenizer function parameters- Padding:max_length; Truncation: True; Use Full Context: False
|
148 |
+
[2025-06-30 23:55:44,646][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau_base-C3
|
149 |
+
[2025-06-30 23:55:44,646][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau_base-C3
|
150 |
+
[2025-06-30 23:55:45,504][__main__][INFO] - Model need ≈ 1.36 GiB to run inference and 2.58 for training
|
151 |
+
[2025-06-30 23:55:46,269][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau_base-C3/snapshots/bad03f1db697f1fb612e4d74bb55d6f0e8cd7a16/config.json
|
152 |
+
[2025-06-30 23:55:46,270][transformers.configuration_utils][INFO] - Model config BertConfig {
|
153 |
"architectures": [
|
154 |
"BertForSequenceClassification"
|
155 |
],
|
|
|
192 |
"position_embedding_type": "absolute",
|
193 |
"problem_type": "single_label_classification",
|
194 |
"torch_dtype": "float32",
|
195 |
+
"transformers_version": "4.53.0",
|
196 |
"type_vocab_size": 2,
|
197 |
"use_cache": true,
|
198 |
"vocab_size": 29794
|
199 |
}
|
200 |
|
201 |
+
[2025-06-30 23:55:59,432][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau_base-C3/snapshots/bad03f1db697f1fb612e4d74bb55d6f0e8cd7a16/model.safetensors
|
202 |
+
[2025-06-30 23:55:59,433][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
|
203 |
+
[2025-06-30 23:55:59,433][transformers.modeling_utils][INFO] - Instantiating BertForSequenceClassification model under default dtype torch.float32.
|
204 |
+
[2025-06-30 23:55:59,824][transformers.modeling_utils][INFO] - All model checkpoint weights were used when initializing BertForSequenceClassification.
|
205 |
|
206 |
+
[2025-06-30 23:55:59,825][transformers.modeling_utils][INFO] - All the weights of BertForSequenceClassification were initialized from the model checkpoint at kamel-usp/jbcs2025_bertimbau_base-C3.
|
207 |
If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
|
208 |
+
[2025-06-30 23:55:59,830][transformers.training_args][INFO] - PyTorch: setting up devices
|
209 |
+
[2025-06-30 23:55:59,868][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
|
210 |
+
[2025-06-30 23:55:59,872][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
|
211 |
+
[2025-06-30 23:55:59,891][transformers.trainer][INFO] - Using auto half precision backend
|
212 |
+
[2025-06-30 23:56:03,371][__main__][INFO] - Running inference on test dataset
|
213 |
+
[2025-06-30 23:56:03,372][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: reference, essay_text, essay_year, id, supporting_text, id_prompt, grades, prompt. If reference, essay_text, essay_year, id, supporting_text, id_prompt, grades, prompt are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.
|
214 |
+
[2025-06-30 23:56:03,376][transformers.trainer][INFO] -
|
215 |
***** Running Prediction *****
|
216 |
+
[2025-06-30 23:56:03,376][transformers.trainer][INFO] - Num examples = 138
|
217 |
+
[2025-06-30 23:56:03,377][transformers.trainer][INFO] - Batch size = 16
|
218 |
+
[2025-06-30 23:56:03,760][__main__][INFO] - Inference results saved to jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only_inference_results.jsonl
|
219 |
+
[2025-06-30 23:56:03,767][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
|
220 |
+
[2025-06-30 23:57:39,277][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
|
221 |
+
[2025-06-30 23:57:39,277][__main__][INFO] - Bootstrap Confidence Intervals (95%):
|
222 |
+
[2025-06-30 23:57:39,277][__main__][INFO] - QWK: 0.3443 [0.2085, 0.4793]
|
223 |
+
[2025-06-30 23:57:39,277][__main__][INFO] - Macro_F1: 0.2754 [0.2026, 0.3652]
|
224 |
+
[2025-06-30 23:57:39,277][__main__][INFO] - Weighted_F1: 0.3357 [0.2573, 0.4166]
|
225 |
+
[2025-06-30 23:57:39,277][__main__][INFO] - Inference results: {'accuracy': 0.37681159420289856, 'RMSE': 52.64042641120627, 'QWK': 0.3452054794520547, 'HDIV': 0.09420289855072461, 'Macro_F1': 0.25943499029705924, 'Micro_F1': 0.37681159420289856, 'Weighted_F1': 0.33380294701134283, 'TP_0': np.int64(0), 'TN_0': np.int64(137), 'FP_0': np.int64(0), 'FN_0': np.int64(1), 'TP_1': np.int64(0), 'TN_1': np.int64(109), 'FP_1': np.int64(0), 'FN_1': np.int64(29), 'TP_2': np.int64(13), 'TN_2': np.int64(101), 'FP_2': np.int64(19), 'FN_2': np.int64(5), 'TP_3': np.int64(20), 'TN_3': np.int64(71), 'FP_3': np.int64(22), 'FN_3': np.int64(25), 'TP_4': np.int64(17), 'TN_4': np.int64(67), 'FP_4': np.int64(33), 'FN_4': np.int64(21), 'TP_5': np.int64(2), 'TN_5': np.int64(119), 'FP_5': np.int64(12), 'FN_5': np.int64(5)}
|
226 |
+
[2025-06-30 23:57:39,277][__main__][INFO] - Inference experiment completed
|
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C4-encoder_classification-C4 → jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only}/.hydra/config.yaml
RENAMED
@@ -30,6 +30,7 @@ experiments:
|
|
30 |
name: neuralmind/bert-base-portuguese-cased
|
31 |
dataset:
|
32 |
grade_index: 3
|
|
|
33 |
training_params:
|
34 |
weight_decay: 0.01
|
35 |
warmup_ratio: 0.1
|
|
|
30 |
name: neuralmind/bert-base-portuguese-cased
|
31 |
dataset:
|
32 |
grade_index: 3
|
33 |
+
use_full_context: false
|
34 |
training_params:
|
35 |
weight_decay: 0.01
|
36 |
warmup_ratio: 0.1
|
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C4-encoder_classification-C4 → jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only}/.hydra/hydra.yaml
RENAMED
@@ -130,18 +130,18 @@ hydra:
|
|
130 |
runtime:
|
131 |
version: 1.3.2
|
132 |
version_base: '1.1'
|
133 |
-
cwd: /
|
134 |
config_sources:
|
135 |
- path: hydra.conf
|
136 |
schema: pkg
|
137 |
provider: hydra
|
138 |
-
- path: /
|
139 |
schema: file
|
140 |
provider: main
|
141 |
- path: ''
|
142 |
schema: structured
|
143 |
provider: schema
|
144 |
-
output_dir: /
|
145 |
choices:
|
146 |
experiments: base_models/C4
|
147 |
hydra/env: default
|
|
|
130 |
runtime:
|
131 |
version: 1.3.2
|
132 |
version_base: '1.1'
|
133 |
+
cwd: /workspace/jbcs2025
|
134 |
config_sources:
|
135 |
- path: hydra.conf
|
136 |
schema: pkg
|
137 |
provider: hydra
|
138 |
+
- path: /workspace/jbcs2025/configs
|
139 |
schema: file
|
140 |
provider: main
|
141 |
- path: ''
|
142 |
schema: structured
|
143 |
provider: schema
|
144 |
+
output_dir: /workspace/jbcs2025/outputs/2025-06-30/23-57-45
|
145 |
choices:
|
146 |
experiments: base_models/C4
|
147 |
hydra/env: default
|
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C4-encoder_classification-C4 → jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only}/.hydra/overrides.yaml
RENAMED
File without changes
|
runs/base_models/bertimbau/jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only/bootstrap_confidence_intervals.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
+
jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only,2025-06-30 23:57:45,0.623338029229533,0.5110704244499952,0.7250524714839471,0.21398204703395196,0.41365346789602125,0.2906398052196123,0.5906355015808844,0.2999956963612721,0.6556936287214997,0.5748725140399749,0.7321161735801723,0.15724365954019748
|
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C4-encoder_classification-C4 → jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only}/evaluation_results.csv
RENAMED
@@ -1,2 +1,2 @@
|
|
1 |
accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
|
2 |
-
0.644927536231884,26.37521893583148,0.6258134490238612,0.007246376811594235,0.36114488348530904,0.644927536231884,0.6545879036165807,0,137,0,1,0,137,0,1,5,118,11,4,51,49,13,25,30,74,18,16,3,126,7,2,2025-06-
|
|
|
1 |
accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
|
2 |
+
0.644927536231884,26.37521893583148,0.6258134490238612,0.007246376811594235,0.36114488348530904,0.644927536231884,0.6545879036165807,0,137,0,1,0,137,0,1,5,118,11,4,51,49,13,25,30,74,18,16,3,126,7,2,2025-06-30 23:57:45,jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only
|
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C4-encoder_classification-C4/jbcs2025_bertimbau_base-C4-encoder_classification-C4_inference_results.jsonl → jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only/jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only_inference_results.jsonl}
RENAMED
File without changes
|
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C4-encoder_classification-C4 → jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only}/run_inference_experiment.log
RENAMED
@@ -1,5 +1,5 @@
|
|
1 |
-
[2025-06-
|
2 |
-
[2025-06-
|
3 |
dataset:
|
4 |
name: kamel-usp/aes_enem_dataset
|
5 |
split: JBCS2025
|
@@ -31,6 +31,7 @@ experiments:
|
|
31 |
name: neuralmind/bert-base-portuguese-cased
|
32 |
dataset:
|
33 |
grade_index: 3
|
|
|
34 |
training_params:
|
35 |
weight_decay: 0.01
|
36 |
warmup_ratio: 0.1
|
@@ -40,9 +41,9 @@ experiments:
|
|
40 |
gradient_accumulation_steps: 1
|
41 |
gradient_checkpointing: false
|
42 |
|
43 |
-
[2025-06-
|
44 |
-
[2025-06-
|
45 |
-
[2025-06-
|
46 |
"architectures": [
|
47 |
"BertForMaskedLM"
|
48 |
],
|
@@ -67,20 +68,20 @@ experiments:
|
|
67 |
"pooler_size_per_head": 128,
|
68 |
"pooler_type": "first_token_transform",
|
69 |
"position_embedding_type": "absolute",
|
70 |
-
"transformers_version": "4.
|
71 |
"type_vocab_size": 2,
|
72 |
"use_cache": true,
|
73 |
"vocab_size": 29794
|
74 |
}
|
75 |
|
76 |
-
[2025-06-
|
77 |
-
[2025-06-
|
78 |
-
[2025-06-
|
79 |
-
[2025-06-
|
80 |
-
[2025-06-
|
81 |
-
[2025-06-
|
82 |
-
[2025-06-
|
83 |
-
[2025-06-
|
84 |
"architectures": [
|
85 |
"BertForMaskedLM"
|
86 |
],
|
@@ -105,14 +106,14 @@ experiments:
|
|
105 |
"pooler_size_per_head": 128,
|
106 |
"pooler_type": "first_token_transform",
|
107 |
"position_embedding_type": "absolute",
|
108 |
-
"transformers_version": "4.
|
109 |
"type_vocab_size": 2,
|
110 |
"use_cache": true,
|
111 |
"vocab_size": 29794
|
112 |
}
|
113 |
|
114 |
-
[2025-06-
|
115 |
-
[2025-06-
|
116 |
"architectures": [
|
117 |
"BertForMaskedLM"
|
118 |
],
|
@@ -137,16 +138,18 @@ experiments:
|
|
137 |
"pooler_size_per_head": 128,
|
138 |
"pooler_type": "first_token_transform",
|
139 |
"position_embedding_type": "absolute",
|
140 |
-
"transformers_version": "4.
|
141 |
"type_vocab_size": 2,
|
142 |
"use_cache": true,
|
143 |
"vocab_size": 29794
|
144 |
}
|
145 |
|
146 |
-
[2025-06-
|
147 |
-
[2025-06-
|
148 |
-
[2025-06-
|
149 |
-
[2025-06-
|
|
|
|
|
150 |
"architectures": [
|
151 |
"BertForSequenceClassification"
|
152 |
],
|
@@ -189,35 +192,35 @@ experiments:
|
|
189 |
"position_embedding_type": "absolute",
|
190 |
"problem_type": "single_label_classification",
|
191 |
"torch_dtype": "float32",
|
192 |
-
"transformers_version": "4.
|
193 |
"type_vocab_size": 2,
|
194 |
"use_cache": true,
|
195 |
"vocab_size": 29794
|
196 |
}
|
197 |
|
198 |
-
[2025-06-
|
199 |
-
[2025-06-
|
200 |
-
[2025-06-
|
201 |
-
[2025-06-
|
202 |
|
203 |
-
[2025-06-
|
204 |
If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
|
205 |
-
[2025-06-
|
206 |
-
[2025-06-
|
207 |
-
[2025-06-
|
208 |
-
[2025-06-
|
209 |
-
[2025-06-
|
210 |
-
[2025-06-
|
211 |
-
[2025-06-
|
212 |
***** Running Prediction *****
|
213 |
-
[2025-06-
|
214 |
-
[2025-06-
|
215 |
-
[2025-06-
|
216 |
-
[2025-06-
|
217 |
-
[2025-06-
|
218 |
-
[2025-06-
|
219 |
-
[2025-06-
|
220 |
-
[2025-06-
|
221 |
-
[2025-06-
|
222 |
-
[2025-06-
|
223 |
-
[2025-06-
|
|
|
1 |
+
[2025-06-30 23:57:45,116][__main__][INFO] - Starting inference experiment
|
2 |
+
[2025-06-30 23:57:45,117][__main__][INFO] - cache_dir: /tmp/
|
3 |
dataset:
|
4 |
name: kamel-usp/aes_enem_dataset
|
5 |
split: JBCS2025
|
|
|
31 |
name: neuralmind/bert-base-portuguese-cased
|
32 |
dataset:
|
33 |
grade_index: 3
|
34 |
+
use_full_context: false
|
35 |
training_params:
|
36 |
weight_decay: 0.01
|
37 |
warmup_ratio: 0.1
|
|
|
41 |
gradient_accumulation_steps: 1
|
42 |
gradient_checkpointing: false
|
43 |
|
44 |
+
[2025-06-30 23:57:45,119][__main__][INFO] - Running inference with fine-tuned HF model
|
45 |
+
[2025-06-30 23:57:50,144][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
|
46 |
+
[2025-06-30 23:57:50,145][transformers.configuration_utils][INFO] - Model config BertConfig {
|
47 |
"architectures": [
|
48 |
"BertForMaskedLM"
|
49 |
],
|
|
|
68 |
"pooler_size_per_head": 128,
|
69 |
"pooler_type": "first_token_transform",
|
70 |
"position_embedding_type": "absolute",
|
71 |
+
"transformers_version": "4.53.0",
|
72 |
"type_vocab_size": 2,
|
73 |
"use_cache": true,
|
74 |
"vocab_size": 29794
|
75 |
}
|
76 |
|
77 |
+
[2025-06-30 23:57:50,350][transformers.tokenization_utils_base][INFO] - loading file vocab.txt from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/vocab.txt
|
78 |
+
[2025-06-30 23:57:50,350][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at None
|
79 |
+
[2025-06-30 23:57:50,350][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/added_tokens.json
|
80 |
+
[2025-06-30 23:57:50,350][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/special_tokens_map.json
|
81 |
+
[2025-06-30 23:57:50,350][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/tokenizer_config.json
|
82 |
+
[2025-06-30 23:57:50,350][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
|
83 |
+
[2025-06-30 23:57:50,350][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
|
84 |
+
[2025-06-30 23:57:50,351][transformers.configuration_utils][INFO] - Model config BertConfig {
|
85 |
"architectures": [
|
86 |
"BertForMaskedLM"
|
87 |
],
|
|
|
106 |
"pooler_size_per_head": 128,
|
107 |
"pooler_type": "first_token_transform",
|
108 |
"position_embedding_type": "absolute",
|
109 |
+
"transformers_version": "4.53.0",
|
110 |
"type_vocab_size": 2,
|
111 |
"use_cache": true,
|
112 |
"vocab_size": 29794
|
113 |
}
|
114 |
|
115 |
+
[2025-06-30 23:57:50,376][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
|
116 |
+
[2025-06-30 23:57:50,376][transformers.configuration_utils][INFO] - Model config BertConfig {
|
117 |
"architectures": [
|
118 |
"BertForMaskedLM"
|
119 |
],
|
|
|
138 |
"pooler_size_per_head": 128,
|
139 |
"pooler_type": "first_token_transform",
|
140 |
"position_embedding_type": "absolute",
|
141 |
+
"transformers_version": "4.53.0",
|
142 |
"type_vocab_size": 2,
|
143 |
"use_cache": true,
|
144 |
"vocab_size": 29794
|
145 |
}
|
146 |
|
147 |
+
[2025-06-30 23:57:50,392][__main__][INFO] - Tokenizer function parameters- Padding:max_length; Truncation: True; Use Full Context: False
|
148 |
+
[2025-06-30 23:57:50,599][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau_base-C4
|
149 |
+
[2025-06-30 23:57:50,599][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau_base-C4
|
150 |
+
[2025-06-30 23:57:51,501][__main__][INFO] - Model need ≈ 1.36 GiB to run inference and 2.58 for training
|
151 |
+
[2025-06-30 23:57:52,494][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau_base-C4/snapshots/be129129fc134c0e782ae9f62b33da331367ab7b/config.json
|
152 |
+
[2025-06-30 23:57:52,494][transformers.configuration_utils][INFO] - Model config BertConfig {
|
153 |
"architectures": [
|
154 |
"BertForSequenceClassification"
|
155 |
],
|
|
|
192 |
"position_embedding_type": "absolute",
|
193 |
"problem_type": "single_label_classification",
|
194 |
"torch_dtype": "float32",
|
195 |
+
"transformers_version": "4.53.0",
|
196 |
"type_vocab_size": 2,
|
197 |
"use_cache": true,
|
198 |
"vocab_size": 29794
|
199 |
}
|
200 |
|
201 |
+
[2025-06-30 23:58:07,769][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau_base-C4/snapshots/be129129fc134c0e782ae9f62b33da331367ab7b/model.safetensors
|
202 |
+
[2025-06-30 23:58:07,770][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
|
203 |
+
[2025-06-30 23:58:07,770][transformers.modeling_utils][INFO] - Instantiating BertForSequenceClassification model under default dtype torch.float32.
|
204 |
+
[2025-06-30 23:58:08,132][transformers.modeling_utils][INFO] - All model checkpoint weights were used when initializing BertForSequenceClassification.
|
205 |
|
206 |
+
[2025-06-30 23:58:08,133][transformers.modeling_utils][INFO] - All the weights of BertForSequenceClassification were initialized from the model checkpoint at kamel-usp/jbcs2025_bertimbau_base-C4.
|
207 |
If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
|
208 |
+
[2025-06-30 23:58:08,138][transformers.training_args][INFO] - PyTorch: setting up devices
|
209 |
+
[2025-06-30 23:58:08,191][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
|
210 |
+
[2025-06-30 23:58:08,196][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
|
211 |
+
[2025-06-30 23:58:08,215][transformers.trainer][INFO] - Using auto half precision backend
|
212 |
+
[2025-06-30 23:58:11,691][__main__][INFO] - Running inference on test dataset
|
213 |
+
[2025-06-30 23:58:11,692][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: reference, essay_text, supporting_text, grades, id_prompt, id, essay_year, prompt. If reference, essay_text, supporting_text, grades, id_prompt, id, essay_year, prompt are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.
|
214 |
+
[2025-06-30 23:58:11,696][transformers.trainer][INFO] -
|
215 |
***** Running Prediction *****
|
216 |
+
[2025-06-30 23:58:11,696][transformers.trainer][INFO] - Num examples = 138
|
217 |
+
[2025-06-30 23:58:11,696][transformers.trainer][INFO] - Batch size = 16
|
218 |
+
[2025-06-30 23:58:12,089][__main__][INFO] - Inference results saved to jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only_inference_results.jsonl
|
219 |
+
[2025-06-30 23:58:12,096][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
|
220 |
+
[2025-06-30 23:59:49,674][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
|
221 |
+
[2025-06-30 23:59:49,674][__main__][INFO] - Bootstrap Confidence Intervals (95%):
|
222 |
+
[2025-06-30 23:59:49,674][__main__][INFO] - QWK: 0.6233 [0.5111, 0.7251]
|
223 |
+
[2025-06-30 23:59:49,674][__main__][INFO] - Macro_F1: 0.4137 [0.2906, 0.5906]
|
224 |
+
[2025-06-30 23:59:49,674][__main__][INFO] - Weighted_F1: 0.6557 [0.5749, 0.7321]
|
225 |
+
[2025-06-30 23:59:49,674][__main__][INFO] - Inference results: {'accuracy': 0.644927536231884, 'RMSE': 26.37521893583148, 'QWK': 0.6258134490238612, 'HDIV': 0.007246376811594235, 'Macro_F1': 0.36114488348530904, 'Micro_F1': 0.644927536231884, 'Weighted_F1': 0.6545879036165807, 'TP_0': np.int64(0), 'TN_0': np.int64(137), 'FP_0': np.int64(0), 'FN_0': np.int64(1), 'TP_1': np.int64(0), 'TN_1': np.int64(137), 'FP_1': np.int64(0), 'FN_1': np.int64(1), 'TP_2': np.int64(5), 'TN_2': np.int64(118), 'FP_2': np.int64(11), 'FN_2': np.int64(4), 'TP_3': np.int64(51), 'TN_3': np.int64(49), 'FP_3': np.int64(13), 'FN_3': np.int64(25), 'TP_4': np.int64(30), 'TN_4': np.int64(74), 'FP_4': np.int64(18), 'FN_4': np.int64(16), 'TP_5': np.int64(3), 'TN_5': np.int64(126), 'FP_5': np.int64(7), 'FN_5': np.int64(2)}
|
226 |
+
[2025-06-30 23:59:49,675][__main__][INFO] - Inference experiment completed
|
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C5-encoder_classification-C5 → jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only}/.hydra/config.yaml
RENAMED
@@ -30,6 +30,7 @@ experiments:
|
|
30 |
name: neuralmind/bert-base-portuguese-cased
|
31 |
dataset:
|
32 |
grade_index: 4
|
|
|
33 |
training_params:
|
34 |
weight_decay: 0.01
|
35 |
warmup_ratio: 0.1
|
|
|
30 |
name: neuralmind/bert-base-portuguese-cased
|
31 |
dataset:
|
32 |
grade_index: 4
|
33 |
+
use_full_context: false
|
34 |
training_params:
|
35 |
weight_decay: 0.01
|
36 |
warmup_ratio: 0.1
|
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C5-encoder_classification-C5 → jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only}/.hydra/hydra.yaml
RENAMED
@@ -130,18 +130,18 @@ hydra:
|
|
130 |
runtime:
|
131 |
version: 1.3.2
|
132 |
version_base: '1.1'
|
133 |
-
cwd: /
|
134 |
config_sources:
|
135 |
- path: hydra.conf
|
136 |
schema: pkg
|
137 |
provider: hydra
|
138 |
-
- path: /
|
139 |
schema: file
|
140 |
provider: main
|
141 |
- path: ''
|
142 |
schema: structured
|
143 |
provider: schema
|
144 |
-
output_dir: /
|
145 |
choices:
|
146 |
experiments: base_models/C5
|
147 |
hydra/env: default
|
|
|
130 |
runtime:
|
131 |
version: 1.3.2
|
132 |
version_base: '1.1'
|
133 |
+
cwd: /workspace/jbcs2025
|
134 |
config_sources:
|
135 |
- path: hydra.conf
|
136 |
schema: pkg
|
137 |
provider: hydra
|
138 |
+
- path: /workspace/jbcs2025/configs
|
139 |
schema: file
|
140 |
provider: main
|
141 |
- path: ''
|
142 |
schema: structured
|
143 |
provider: schema
|
144 |
+
output_dir: /workspace/jbcs2025/outputs/2025-06-30/23-59-55
|
145 |
choices:
|
146 |
experiments: base_models/C5
|
147 |
hydra/env: default
|
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C5-encoder_classification-C5 → jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only}/.hydra/overrides.yaml
RENAMED
File without changes
|
runs/base_models/bertimbau/jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only/bootstrap_confidence_intervals.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
|
2 |
+
jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only,2025-06-30 23:59:55,0.47349799901126716,0.3401973117894254,0.5947975929869902,0.2546002811975648,0.20469588256838514,0.14697576658446224,0.27274642041824704,0.1257706538337848,0.25750931482031114,0.18034272476682853,0.33952288243091566,0.15918015766408714
|
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C5-encoder_classification-C5 → jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only}/evaluation_results.csv
RENAMED
@@ -1,2 +1,2 @@
|
|
1 |
accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
|
2 |
-
0.3188405797101449,61.2904702146299,0.476219483623073,0.13043478260869568,0.2055897809038726,0.3188405797101449,0.25808413038205613,3,113,3,19,9,71,35,23,3,103,11,21,1,108,5,24,28,66,40,4,0,135,0,3,2025-06-
|
|
|
1 |
accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
|
2 |
+
0.3188405797101449,61.2904702146299,0.476219483623073,0.13043478260869568,0.2055897809038726,0.3188405797101449,0.25808413038205613,3,113,3,19,9,71,35,23,3,103,11,21,1,108,5,24,28,66,40,4,0,135,0,3,2025-06-30 23:59:55,jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only
|
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C5-encoder_classification-C5/jbcs2025_bertimbau_base-C5-encoder_classification-C5_inference_results.jsonl → jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only/jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only_inference_results.jsonl}
RENAMED
File without changes
|