jonathan-roberts1 commited on
Commit
83c1180
·
verified ·
1 Parent(s): 69628fb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -13
README.md CHANGED
@@ -50,17 +50,19 @@ dataset_info:
50
  dataset_size: 1911299268.0
51
  ---
52
 
53
- # Dataset Card for SciFIBench
 
54
 
55
  ## Dataset Description
56
 
57
- - **Homepage:** [https://github.com/jonathan-roberts1/SciFIBench](https://github.com/jonathan-roberts1/SciFIBench)
58
  - **Paper:** [SciFIBench: Benchmarking Large Multimodal Models for Scientific Figure Interpretation](https://arxiv.org/pdf/2405.08807)
59
-
 
60
  ### Dataset Summary
61
- The SciFIBench (Scientific Figure Interpretation Benchmark) contains 1000 multiple-choice scientific figure interpretation questions covering two tasks. Task 1:
62
  Figure -> Caption involves selecting the most appropriate caption given a figure; Task 2: Caption -> Figure involves the opposite -- selecting the most appropriate
63
- figure given a caption. This benchmark was curated from the SciCap dataset, using adversarial filtering to obtain hard negatives. Human verification has been performed
64
  on each question to ensure high-quality,
65
  answerable questions.
66
 
@@ -70,23 +72,34 @@ from datasets import load_dataset
70
 
71
  # load dataset
72
  dataset = load_dataset("jonathan-roberts1/SciFIBench") # optional: set cache_dir="PATH/TO/MY/CACHE/DIR"
73
- # figure2caption_dataset = load_dataset("jonathan-roberts1/SciFIBench", split="Figure2Caption")
74
- # caption2figure_dataset = load_dataset("jonathan-roberts1/SciFIBench", split="Caption2Figure")
 
 
 
75
  """
76
  DatasetDict({
77
- Caption2Figure: Dataset({
 
 
 
 
 
 
 
 
78
  features: ['ID', 'Question', 'Options', 'Answer', 'Category', 'Images'],
79
  num_rows: 500
80
  })
81
- Figure2Caption: Dataset({
82
  features: ['ID', 'Question', 'Options', 'Answer', 'Category', 'Images'],
83
  num_rows: 500
84
  })
85
  })
86
  """
87
 
88
- # select task
89
- figure2caption_dataset = dataset['Figure2Caption']
90
  """
91
  Dataset({
92
  features: ['ID', 'Question', 'Options', 'Answer', 'Category', 'Images'],
@@ -95,7 +108,7 @@ Dataset({
95
  """
96
 
97
  # query items
98
- figure2caption_dataset[40] # e.g., the 41st element
99
  """
100
  {'ID': 40,
101
  'Question': 'Which caption best matches the image?',
@@ -112,7 +125,7 @@ figure2caption_dataset[40] # e.g., the 41st element
112
 
113
  ### Source Data
114
 
115
- More information regarding the source data can be found at: https://github.com/tingyaohsu/SciCap
116
 
117
  ### Dataset Curators
118
 
 
50
  dataset_size: 1911299268.0
51
  ---
52
 
53
+ # SciFIBench
54
+ NeurIPS 2024
55
 
56
  ## Dataset Description
57
 
58
+ - **Homepage:** [SciFIBench](https://scifibench.github.io/)
59
  - **Paper:** [SciFIBench: Benchmarking Large Multimodal Models for Scientific Figure Interpretation](https://arxiv.org/pdf/2405.08807)
60
+ - **Repository** [Needle Threading](https://github.com/jonathan-roberts1/SciFIBench)
61
+ -
62
  ### Dataset Summary
63
+ The SciFIBench (Scientific Figure Interpretation Benchmark) contains 2000 multiple-choice scientific figure interpretation questions covering two tasks. Task 1:
64
  Figure -> Caption involves selecting the most appropriate caption given a figure; Task 2: Caption -> Figure involves the opposite -- selecting the most appropriate
65
+ figure given a caption. This benchmark was curated from the SciCap and ArxivCap datasets, using adversarial filtering to obtain hard negatives. Human verification has been performed
66
  on each question to ensure high-quality,
67
  answerable questions.
68
 
 
72
 
73
  # load dataset
74
  dataset = load_dataset("jonathan-roberts1/SciFIBench") # optional: set cache_dir="PATH/TO/MY/CACHE/DIR"
75
+ # there are 4 dataset splits, which can be indexed separately
76
+ # cs_figure2caption_dataset = load_dataset("jonathan-roberts1/SciFIBench", split="CS_Figure2Caption")
77
+ # cs_caption2figure_dataset = load_dataset("jonathan-roberts1/SciFIBench", split="CS_Caption2Figure")
78
+ # general_figure2caption_dataset = load_dataset("jonathan-roberts1/SciFIBench", split="General_Figure2Caption")
79
+ # general_caption2figure_dataset = load_dataset("jonathan-roberts1/SciFIBench", split="General_Caption2Figure")
80
  """
81
  DatasetDict({
82
+ CS_Caption2Figure: Dataset({
83
+ features: ['ID', 'Question', 'Options', 'Answer', 'Category', 'Images'],
84
+ num_rows: 500
85
+ })
86
+ CS_Figure2Caption: Dataset({
87
+ features: ['ID', 'Question', 'Options', 'Answer', 'Category', 'Images'],
88
+ num_rows: 500
89
+ })
90
+ General_Caption2Figure: Dataset({
91
  features: ['ID', 'Question', 'Options', 'Answer', 'Category', 'Images'],
92
  num_rows: 500
93
  })
94
+ General_Figure2Caption: Dataset({
95
  features: ['ID', 'Question', 'Options', 'Answer', 'Category', 'Images'],
96
  num_rows: 500
97
  })
98
  })
99
  """
100
 
101
+ # select task and split
102
+ cs_figure2caption_dataset = dataset['CS_Figure2Caption']
103
  """
104
  Dataset({
105
  features: ['ID', 'Question', 'Options', 'Answer', 'Category', 'Images'],
 
108
  """
109
 
110
  # query items
111
+ cs_figure2caption_dataset[40] # e.g., the 41st element
112
  """
113
  {'ID': 40,
114
  'Question': 'Which caption best matches the image?',
 
125
 
126
  ### Source Data
127
 
128
+ More information regarding the source data can be found at: https://github.com/tingyaohsu/SciCap and https://mm-arxiv.github.io/.
129
 
130
  ### Dataset Curators
131