File size: 7,100 Bytes
f3bad19
 
 
dcb71db
 
f3bad19
 
 
 
 
 
 
8b477b5
 
 
 
77c5518
546be88
804df9b
47b0aa0
 
 
 
c193ec6
 
 
47b0aa0
 
 
 
c193ec6
 
 
47b0aa0
 
 
c193ec6
 
 
47b0aa0
 
 
c193ec6
 
 
47b0aa0
 
 
c193ec6
 
 
d23c839
 
546be88
d23c839
5767e79
43e58a9
5767e79
ba4f51d
 
9f06ac5
 
04e2d0a
962c210
4e87acd
dcb71db
6b3ee5f
8f72ba5
8bd03ca
8f72ba5
 
d23c839
d205970
8bfdf6b
8b477b5
cb5325e
2071904
cb5325e
 
f3d8c28
cb5325e
c85dae1
f3d8c28
 
f78bf44
 
 
 
 
ae12804
f78bf44
 
 
ae12804
1282903
122ef43
 
b0df395
47b0aa0
 
265a800
8b477b5
265a800
8b477b5
265a800
8b477b5
265a800
a431ec5
265a800
 
 
 
 
 
a431ec5
3c97952
 
265a800
 
 
 
 
ba23be3
265a800
47b0aa0
265a800
a431ec5
2a620a4
 
 
 
cb5325e
04e2d0a
2a620a4
cb5325e
 
2a620a4
 
e681512
 
1b71b3f
 
e681512
1b71b3f
 
e681512
 
2a620a4
 
 
cb5325e
2a620a4
 
 
 
 
 
cb5325e
 
 
 
 
 
 
 
2830222
cb5325e
47b0aa0
f34b318
 
 
cb5325e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
---
task_categories:
- automatic-speech-recognition
multilinguality:
- multilingual
language:
- en
- fr
- de
- es
tags:
- music
- lyrics
- evaluation
- benchmark
- transcription
- pnc
pretty_name: 'Jam-ALT: A Readability-Aware Lyrics Transcription Benchmark'
paperswithcode_id: jam-alt
configs:
- config_name: all
  data_files:
  - split: test
    path:
      - metadata.jsonl
      - subsets/*/audio/*.mp3
  default: true
- config_name: de
  data_files:
  - split: test
    path:
      - subsets/de/metadata.jsonl
      - subsets/de/audio/*.mp3
- config_name: en
  data_files:
  - split: test
    path:
      - subsets/en/metadata.jsonl
      - subsets/en/audio/*.mp3
- config_name: es
  data_files:
  - split: test
    path:
      - subsets/es/metadata.jsonl
      - subsets/es/audio/*.mp3
- config_name: fr
  data_files:
  - split: test
    path:
      - subsets/fr/metadata.jsonl
      - subsets/fr/audio/*.mp3
---

# Jam-ALT: A Readability-Aware Lyrics Transcription Benchmark


## Dataset description

* **Project page:** https://audioshake.github.io/jam-alt/
* **Source code:** https://github.com/audioshake/alt-eval
* **Paper (ISMIR 2024):** https://doi.org/10.5281/zenodo.14877443
* **Paper (arXiv):** https://arxiv.org/abs/2408.06370
* **Follow-up paper (ICMEW 2025):** https://arxiv.org/abs/2506.15514
* **Extended abstract (ISMIR 2023 LBD):** https://arxiv.org/abs/2311.13987
* **Related datasets:** https://huggingface.co/jamendolyrics

Jam-ALT is a revision of the [**JamendoLyrics**](https://huggingface.co/datasets/jamendolyrics/jamendolyrics) dataset (79 songs in 4 languages), intended for use as an **automatic lyrics transcription** (**ALT**) benchmark.
It has been published in the ISMIR 2024 paper (full citation [below](#citation)): \
📄 [**Lyrics Transcription for Humans: A Readability-Aware Benchmark**](https://doi.org/10.5281/zenodo.14877443) \
👥 O. Cífka, H. Schreiber, L. Miner, F.-R. Stöter \
🏢 [AudioShake](https://www.audioshake.ai/)

The lyrics have been revised according to the newly compiled [annotation guidelines](GUIDELINES.md), which include rules about spelling and formatting, as well as punctuation and capitalization (PnC).
The audio is identical to the JamendoLyrics dataset.

💥 **New:** The dataset now has **line-level timings**.
They were added in the paper 📄 [**Exploiting Music Source Separation for Automatic Lyrics Transcription with Whisper**](https://arxiv.org/abs/2506.15514) by
J. Syed, I. Meresman-Higgs, O. Cífka, and M. Sandler, presented at the [2025 ICME Workshop AI for Music](https://ai4musicians.org/2025icme.html).

> [!note]
> **Note:** The dataset is not time-aligned at the word level. To evaluate **automatic lyrics alignment** (**ALA**), please use [JamendoLyrics](https://huggingface.co/datasets/jamendolyrics/jamendolyrics), which is the standard benchmark for that task.

> [!tip]
> See the [project website](https://audioshake.github.io/jam-alt/) for details and the [JamendoLyrics community](https://huggingface.co/jamendolyrics) for related datasets.

## Loading the data

```python
from datasets import load_dataset
dataset = load_dataset("jamendolyrics/jam-alt", split="test")
```

A subset is defined for each language (`en`, `fr`, `de`, `es`);
for example, use `load_dataset("jamendolyrics/jam-alt", "es")` to load only the Spanish songs.

To control how the audio is decoded, cast the `audio` column using `dataset.cast_column("audio", datasets.Audio(...))`.
Useful arguments to `datasets.Audio()` are:
- `sampling_rate` and `mono=True` to control the sampling rate and number of channels.
- `decode=False` to skip decoding the audio and just get the MP3 file paths and contents.

## Running the benchmark

The evaluation is implemented in our [`alt-eval` package](https://github.com/audioshake/alt-eval):
```python
from datasets import load_dataset
from alt_eval import compute_metrics

dataset = load_dataset("jamendolyrics/jam-alt", revision="v1.4.0", split="test")
# transcriptions: list[str]
compute_metrics(dataset["text"], transcriptions, languages=dataset["language"])
```

For example, the following code can be used to evaluate Whisper:
```python
dataset = load_dataset("jamendolyrics/jam-alt", revision="v1.4.0", split="test")
dataset = dataset.cast_column("audio", datasets.Audio(decode=False))  # Get the raw audio file, let Whisper decode it

model = whisper.load_model("tiny")
transcriptions = [
  "\n".join(s["text"].strip() for s in model.transcribe(a["path"])["segments"])
  for a in dataset["audio"]
]
compute_metrics(dataset["text"], transcriptions, languages=dataset["language"])
```
Alternatively, if you already have transcriptions, you might prefer to skip loading the `audio` column:
```python
dataset = load_dataset("jamendolyrics/jam-alt", revision="v1.4.0", split="test").remove_columns("audio")
```

## Citation

When using the benchmark, please cite our [ISMIR paper](https://doi.org/10.5281/zenodo.14877443) as well as the original [JamendoLyrics paper](https://arxiv.org/abs/2306.07744).
For the line-level timings, please cite the [ICME workshop paper](https://arxiv.org/abs/2506.15514).
```bibtex
@inproceedings{cifka-2024-jam-alt,
  author       = {Ond{\v{r}}ej C{\'{\i}}fka and
                  Hendrik Schreiber and
                  Luke Miner and
                  Fabian{-}Robert St{\"{o}}ter},
  title        = {Lyrics Transcription for Humans: {A} Readability-Aware Benchmark},
  booktitle    = {Proceedings of the 25th International Society for 
                  Music Information Retrieval Conference},
  pages        = {737--744},
  year         = 2024,
  publisher    = {ISMIR},
  doi          = {10.5281/ZENODO.14877443},
  url          = {https://doi.org/10.5281/zenodo.14877443}
}
@inproceedings{durand-2023-contrastive,
  author={Durand, Simon and Stoller, Daniel and Ewert, Sebastian},
  booktitle={2023 {IEEE} International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, 
  title={Contrastive Learning-Based Audio to Lyrics Alignment for Multiple Languages}, 
  year={2023},
  pages={1-5},
  address={Rhodes Island, Greece},
  doi={10.1109/ICASSP49357.2023.10096725}
}
@inproceedings{syed-2025-mss-alt,
  author       = {Jaza Syed and
                  Ivan Meresman-Higgs and
                  Ond{\v{r}}ej C{\'{\i}}fka and
                  Mark Sandler},
  title        = {Exploiting Music Source Separation for Automatic Lyrics Transcription with {Whisper}},
  booktitle    = {2025 {IEEE} International Conference on Multimedia and Expo Workshops (ICMEW)},
  publisher    = {IEEE},
  year         = {2025}
}
```

## Contributions

The transcripts, originally from the [JamendoLyrics](https://huggingface.co/datasets/jamendolyrics/jamendolyrics) dataset, were revised by Ondřej Cífka, Hendrik Schreiber, Fabian-Robert Stöter, Luke Miner, Laura Ibáñez, Pamela Ode, Mathieu Fontaine, Claudia Faller, April Anderson, Constantinos Dimitriou, and Kateřina Apolínová.
Line-level timings were automatically transferred from JamendoLyrics and manually corrected by Ondřej Cífka and Jaza Syed to fit the revised transcripts.