--- license: apache-2.0 task_categories: - image-to-3d tags: - slam - 3d-reconstruction - monocular --- This repository contains data for WildGS-SLAM: Monocular Gaussian Splatting SLAM in Dynamic Environments. [Paper](https://huggingface.co/papers/2504.03886) | [Project Page](https://wildgs-slam.github.io/) | [Code](https://github.com/GradientSpaces/WildGS-SLAM) WildGS-SLAM accurately tracks the camera trajectory and reconstructs a 3D Gaussian map for static elements from a monocular video sequence, effectively removing dynamic components. ### Datasets Used WildGS-SLAM uses data from the following datasets: * **Wild-SLAM Mocap Dataset:** ([Hugging Face](https://huggingface.co/datasets/gradient-spaces/Wild-SLAM/tree/main/Mocap)) Download instructions are available in the [github repository](https://github.com/GradientSpaces/WildGS-SLAM). * **Wild-SLAM iPhone Dataset:** ([Hugging Face](https://huggingface.co/datasets/gradient-spaces/Wild-SLAM/tree/main/iPhone)) Download instructions are available in the [github repository](https://github.com/GradientSpaces/WildGS-SLAM). * **Bonn Dynamic Dataset:** ([Website](https://www.ipb.uni-bonn.de/data/rgbd-dynamic-dataset/index.html)) Download instructions are available in the [github repository](https://github.com/GradientSpaces/WildGS-SLAM). * **TUM RGB-D (dynamic) Dataset:** Download instructions are available in the [github repository](https://github.com/GradientSpaces/WildGS-SLAM).