seqBench / metadata /croissant.json
emnlp-submission's picture
Update metadata/croissant.json
e1c81e5 verified
{
"@context": {
"@language": "en",
"@vocab": "https://schema.org/",
"citeAs": "cr:citeAs",
"column": "cr:column",
"conformsTo": "dct:conformsTo",
"cr": "http://mlcommons.org/croissant/",
"rai": "http://mlcommons.org/croissant/RAI/",
"data": {
"@id": "cr:data",
"@type": "@json"
},
"dataType": {
"@id": "cr:dataType",
"@type": "@vocab"
},
"dct": "http://purl.org/dc/terms/",
"examples": {
"@id": "cr:examples",
"@type": "@json"
},
"extract": "cr:extract",
"field": "cr:field",
"fileProperty": "cr:fileProperty",
"fileObject": "cr:fileObject",
"fileSet": "cr:fileSet",
"format": "cr:format",
"includes": "cr:includes",
"isLiveDataset": "cr:isLiveDataset",
"jsonPath": "cr:jsonPath",
"key": "cr:key",
"md5": "cr:md5",
"parentField": "cr:parentField",
"path": "cr:path",
"recordSet": "cr:recordSet",
"references": "cr:references",
"regex": "cr:regex",
"repeated": "cr:repeated",
"replace": "cr:replace",
"sc": "https://schema.org/",
"separator": "cr:separator",
"source": "cr:source",
"subField": "cr:subField",
"transform": "cr:transform"
},
"@type": "sc:Dataset",
"name": "seqBench",
"description": "\nSeqBench is a tunable benchmark designed to probe and analyze sequential reasoning \ncapabilities in language models. This compact version contains instances with varied \ncomplexity. Each instance provides:\n- 'context': NLP problem.\n- 'completion': Solution.\n- 'complexity_parameters': A dictionary with L, B, N.\n- 'instance_metadata': Maze dimensions and agent/target names.\n- 'structural_details': Rich structural information (as a JSON string) including room mappings, \n adjacency lists, door/key details, and canonical facts for the underlying base maze.\n",
"conformsTo": "http://mlcommons.org/croissant/1.0",
"citeAs": "@misc{anonymous2025seqbench,\n author = {Anonymous Submission},\n title = {SeqBench: A Tunable Benchmark to Quantify Sequential Reasoning Limits of LLMs},\n year = {2025},\n publisher = {Proceedings of the Conference on Empirical Methods in Natural Language Processing},\n note = {Special Theme: Interdisciplinary Recontextualization of NLP},\n comment = {Dataset accessible at https://huggingface.co/datasets/emnlp-submission/seqBench}\n}",
"license": "https://creativecommons.org/licenses/by/4.0/",
"url": "https://huggingface.co/datasets/emnlp-submission/seqBench",
"distribution": [
{
"@type": "cr:FileObject",
"@id": "seqbench-jsonl-gz-file",
"name": "seqbench-jsonl-gz-file",
"description": "The main benchmark data file in gzipped JSONL format.",
"contentUrl": "https://huggingface.co/datasets/emnlp-submission/seqBench/resolve/main/seqBench_compact.jsonl.gz",
"encodingFormat": "application/gzip",
"sha256": "2b58a2f7b65def3445f2572726d5ff30d5ecab9cc841fffcb57a8bceb937b0c3"
}
],
"recordSet": [
{
"@type": "cr:RecordSet",
"@id": "seqbench-records",
"name": "seqbench-records",
"description": "Individual instances from the SeqBench benchmark (extracted from gzipped JSONL).",
"field": [
{
"@type": "cr:Field",
"@id": "context",
"name": "context",
"dataType": "sc:Text",
"source": {
"fileObject": {
"@id": "seqbench-jsonl-gz-file"
},
"extract": {
"column": "context"
}
}
},
{
"@type": "cr:Field",
"@id": "completion",
"name": "completion",
"dataType": "sc:Text",
"source": {
"fileObject": {
"@id": "seqbench-jsonl-gz-file"
},
"extract": {
"column": "completion"
}
}
},
{
"@type": "cr:Field",
"@id": "logical_depth_L",
"name": "logical_depth_L",
"dataType": "sc:Integer",
"source": {
"fileObject": {
"@id": "seqbench-jsonl-gz-file"
},
"extract": {
"jsonPath": "complexity_parameters.logical_depth_L"
}
}
},
{
"@type": "cr:Field",
"@id": "backtracking_count_B",
"name": "backtracking_count_B",
"dataType": "sc:Integer",
"source": {
"fileObject": {
"@id": "seqbench-jsonl-gz-file"
},
"extract": {
"jsonPath": "complexity_parameters.backtracking_count_B"
}
}
},
{
"@type": "cr:Field",
"@id": "noise_ratio_N",
"name": "noise_ratio_N",
"dataType": "sc:Float",
"source": {
"fileObject": {
"@id": "seqbench-jsonl-gz-file"
},
"extract": {
"jsonPath": "complexity_parameters.noise_ratio_N"
}
}
},
{
"@type": "cr:Field",
"@id": "instance_id",
"name": "instance_id",
"dataType": "sc:Text",
"source": {
"fileObject": {
"@id": "seqbench-jsonl-gz-file"
},
"extract": {
"column": "instance_id"
}
}
},
{
"@type": "cr:Field",
"@id": "full_instance_metadata",
"name": "full_instance_metadata",
"description": "Full instance metadata as a JSON string (contains maze_rows, maze_cols, agent_name, target_name).",
"dataType": "sc:Text",
"source": {
"fileObject": {
"@id": "seqbench-jsonl-gz-file"
},
"extract": {
"column": "instance_metadata"
}
}
},
{
"@type": "cr:Field",
"@id": "structural_details_json",
"name": "structural_details_json",
"description": "Full structural details as a JSON string.",
"dataType": "sc:Text",
"source": {
"fileObject": {
"@id": "seqbench-jsonl-gz-file"
},
"extract": {
"column": "structural_details"
}
}
}
]
}
]
}