eduagarcia commited on
Commit
f20106c
·
verified ·
1 Parent(s): b41ae9c

Update status of WizardLM/WizardLM-70B-V1.0_eval_request_False_float16_Original to FAILED

Browse files
WizardLM/WizardLM-70B-V1.0_eval_request_False_float16_Original.json CHANGED
@@ -7,10 +7,12 @@
7
  "params": 70.0,
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
- "status": "RUNNING",
11
  "submitted_time": "2024-03-05T16:39:12Z",
12
  "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)",
13
  "source": "leaderboard",
14
  "job_id": 313,
15
- "job_start_time": "2024-03-08T17-58-27.260196"
 
 
16
  }
 
7
  "params": 70.0,
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
+ "status": "FAILED",
11
  "submitted_time": "2024-03-05T16:39:12Z",
12
  "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)",
13
  "source": "leaderboard",
14
  "job_id": 313,
15
+ "job_start_time": "2024-03-08T17-58-27.260196",
16
+ "error_msg": "CUDA out of memory. Tried to allocate 128.00 MiB. GPU 1 has a total capacty of 79.35 GiB of which 116.19 MiB is free. Process 3823000 has 26.52 GiB memory in use. Process 3968214 has 33.94 GiB memory in use. Process 2093962 has 18.77 GiB memory in use. Of the allocated memory 26.00 GiB is allocated by PyTorch, and 15.36 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF",
17
+ "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 231, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 100, in simple_evaluate\n lm = lm_eval.api.registry.get_model(model).create_from_arg_string(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/api/model.py\", line 134, in create_from_arg_string\n return cls(**args, **args2)\n ^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 297, in __init__\n self._create_model(\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 608, in _create_model\n self._model = self.AUTO_MODEL_CLASS.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/auto/auto_factory.py\", line 561, in from_pretrained\n return model_class.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 3502, in from_pretrained\n ) = cls._load_pretrained_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 3926, in _load_pretrained_model\n new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 805, in _load_state_dict_into_meta_model\n set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs)\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/accelerate/utils/modeling.py\", line 347, in set_module_tensor_to_device\n new_value = value.to(device)\n ^^^^^^^^^^^^^^^^\ntorch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 128.00 MiB. GPU 1 has a total capacty of 79.35 GiB of which 116.19 MiB is free. Process 3823000 has 26.52 GiB memory in use. Process 3968214 has 33.94 GiB memory in use. Process 2093962 has 18.77 GiB memory in use. Of the allocated memory 26.00 GiB is allocated by PyTorch, and 15.36 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF\n"
18
  }