Update status of THUDM/chatglm3-6b-base_eval_request_False_float16_Original to FAILED
Browse files
THUDM/chatglm3-6b-base_eval_request_False_float16_Original.json
CHANGED
@@ -7,10 +7,12 @@
|
|
7 |
"params": 6.0,
|
8 |
"architectures": "ChatGLMModel",
|
9 |
"weight_type": "Original",
|
10 |
-
"status": "
|
11 |
"submitted_time": "2024-02-05T23:09:16Z",
|
12 |
"model_type": "🟢 : pretrained",
|
13 |
"source": "script",
|
14 |
"job_id": 350,
|
15 |
-
"job_start_time": "2024-04-02T09-59-02.085745"
|
|
|
|
|
16 |
}
|
|
|
7 |
"params": 6.0,
|
8 |
"architectures": "ChatGLMModel",
|
9 |
"weight_type": "Original",
|
10 |
+
"status": "FAILED",
|
11 |
"submitted_time": "2024-02-05T23:09:16Z",
|
12 |
"model_type": "🟢 : pretrained",
|
13 |
"source": "script",
|
14 |
"job_id": 350,
|
15 |
+
"job_start_time": "2024-04-02T09-59-02.085745",
|
16 |
+
"error_msg": "CUDA out of memory. Tried to allocate 214.00 MiB. GPU 0 has a total capacty of 79.35 GiB of which 152.19 MiB is free. Process 4070277 has 18.54 GiB memory in use. Process 4074833 has 9.47 GiB memory in use. Process 188848 has 32.47 GiB memory in use. Process 209361 has 18.72 GiB memory in use. Of the allocated memory 8.95 GiB is allocated by PyTorch, and 13.31 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF",
|
17 |
+
"traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 238, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 100, in simple_evaluate\n lm = lm_eval.api.registry.get_model(model).create_from_arg_string(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/api/model.py\", line 134, in create_from_arg_string\n return cls(**args, **args2)\n ^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 297, in __init__\n self._create_model(\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 608, in _create_model\n self._model = self.AUTO_MODEL_CLASS.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/auto/auto_factory.py\", line 556, in from_pretrained\n return model_class.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 3502, in from_pretrained\n ) = cls._load_pretrained_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 3926, in _load_pretrained_model\n new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 805, in _load_state_dict_into_meta_model\n set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs)\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/accelerate/utils/modeling.py\", line 347, in set_module_tensor_to_device\n new_value = value.to(device)\n ^^^^^^^^^^^^^^^^\ntorch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 214.00 MiB. GPU 0 has a total capacty of 79.35 GiB of which 152.19 MiB is free. Process 4070277 has 18.54 GiB memory in use. Process 4074833 has 9.47 GiB memory in use. Process 188848 has 32.47 GiB memory in use. Process 209361 has 18.72 GiB memory in use. Of the allocated memory 8.95 GiB is allocated by PyTorch, and 13.31 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF\n"
|
18 |
}
|