Datasets:
File size: 1,784 Bytes
d7b058b ea0b64e d7b058b 62cf312 ea0b64e 62cf312 ea0b64e 62cf312 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
task_categories:
- text-generation
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
dataset_info:
features:
- name: repo
dtype: string
- name: instance_id
dtype: string
- name: base_commit
dtype: string
- name: patch
dtype: string
- name: test_patch
dtype: string
- name: problem_statement
dtype: string
- name: hints_text
dtype: string
- name: created_at
dtype: int64
- name: labels
sequence: string
- name: category
dtype: string
- name: edit_functions
sequence: string
- name: added_functions
sequence: string
- name: edit_functions_length
dtype: int64
splits:
- name: test
num_bytes: 11007786
num_examples: 660
download_size: 3913633
dataset_size: 11007786
---
# LOC-BENCH: A Benchmark for Code Localization
<!-- Provide a quick summary of the dataset. -->
LOC-BENCH is a dataset specifically designed for evaluating code localization methods in software repositories.
LOC-BENCH provides a diverse set of issues, including bug reports, feature requests, security vulnerabilities, and performance optimizations.
Code: https://github.com/gersteinlab/LocAgent
## 🔧 How to Use
You can easily load LOC-BENCH using Hugging Face's datasets library:
```
from datasets import load_dataset
dataset = load_dataset("czlll/Loc-Bench")
```
## 📄 Citation
If you use LOC-BENCH in your research, please cite our paper:
```
@article{chen2025locagent,
title={LocAgent: Graph-Guided LLM Agents for Code Localization},
author={Chen, Zhaoling and Tang,Xiangru and Deng,Gangda and Wu,Fang and Wu,Jialong and Jiang,Zhiwei and Prasanna,Viktor and Cohan,Arman and Wang,Xingyao},
journal={arXiv preprint arXiv:2503.09089},
year={2025}
}
``` |