Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 5,798 Bytes
24925b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
"""Universal Text Classification Dataset (UTCD)"""


import os
import json
from os.path import join as os_join
from typing import List

import datasets

from stefutil import *


_DESCRIPTION = """
UTCD is a compilation of 18 classification datasets spanning 3 categories of Sentiment, 
Intent/Dialogue and Topic classification. UTCD focuses on the task of zero-shot text classification where the 
candidate labels are descriptive of the text being classified. UTCD consists of ~ 6M/800K train/test examples. 
"""

# TODO: citation

_URL = "https://github.com/ChrisIsKing/zero-shot-text-classification/tree/master"
_URL_ZIP = "https://huggingface.co/datasets/claritylab/UTCD/raw/main/datasets.zip"

_VERSION = datasets.Version('0.0.1')


class UtcdConfig(datasets.BuilderConfig):
    """BuilderConfig for SuperGLUE."""

    def __init__(self, domain: str, normalize_aspect: bool = False, **kwargs):
        """BuilderConfig for UTCD.
        Args:
          domain: `string`, dataset domain, one of [`in`, `out`].
          normalize_aspect: `bool`, if True, an aspect-normalized version of the dataset is returned.
          **kwargs: keyword arguments forwarded to super.
        """
        # Version history:
        # 0.0.1: Initial version.
        super(UtcdConfig, self).__init__(version=_VERSION, **kwargs)
        ca.check_mismatch('Dataset Domain', domain, ['in', 'out'])
        self.domain = domain
        self.normalize_aspect = normalize_aspect

    def to_dir_name(self):
        """
        :return: directory name for the dataset files for this config stored on hub
        """
        domain_str = 'in-domain' if self.domain == 'in' else 'out-of-domain'
        prefix = 'aspect-normalized-' if self.normalize_aspect else ''
        return f'{prefix}{domain_str}'


config = StefConfig('config.json')
# mic(config('go_emotion'))


class Utcd(datasets.GeneratorBasedBuilder):
    """UTCD: Universal Text Classification Dataset. Version 0.0."""

    # _config = dict(
    #     go_emotion=dict(aspect='sentiment', domain='in', name='GoEmotions'),
    #     sentiment_tweets_2020=dict(aspect='sentiment', domain='in', name='TweetEval'),
    #     emotion=dict(aspect='sentiment', domain='in', name='Emotion'),
    #     sgd=dict(aspect='intent', domain='in', name='Schema-Guided Dialogue'),
    #     clinc_150=dict(aspect='intent', domain='in', name='Clinc-150'),
    #     slurp=dict(aspect='intent', domain='in', name='SLURP'),
    #     ag_news=dict(aspect='topic', domain='in', name='AG News'),
    #     dbpedia=dict(aspect='topic', domain='in', name='DBpedia'),
    #     yahoo=dict(aspect='topic', domain='in', name='Yahoo Answer Topics'),
    #
    #     amazon_polarity=dict(aspect='sentiment', domain='out', name='Amazon Review Polarity'),
    #     finance_sentiment=dict( aspect='sentiment', domain='out', name='Financial Phrase Bank'),
    #     yelp=dict(aspect='sentiment', domain='out', name='Yelp Review'),
    #     banking77=dict(aspect='intent', domain='out', name='Banking77'),
    #     snips=dict(aspect='intent', domain='out', name='SNIPS'),
    #     nlu_evaluation=dict(aspect='intent', domain='out', name='NLU Evaluation'),
    #     multi_eurlex=dict(aspect='topic', domain='out', name='MultiEURLEX'),
    #     patent=dict(aspect='topic', domain='out', name='Big Patent'),
    #     consumer_finance=dict(aspect='topic', domain='out', name='Consumer Finance Complaints')
    # )

    VERSION = _VERSION

    BUILDER_CONFIGS = [
        UtcdConfig(
            name='in-domain',
            description='All in-domain datasets.',
            domain='in',
            normalize_aspect=False
        ),
        UtcdConfig(
            name='aspect-normalized-in-domain',
            description='Aspect-normalized version of all in-domain datasets.',
            domain='in',
            normalize_aspect=True
        ),
        UtcdConfig(
            name='out-of-domain',
            description='All out-of-domain datasets.',
            domain='out',
            normalize_aspect=False
        ),
        UtcdConfig(
            name='aspect-normalized-out-of-domain',
            description='Aspect-normalized version of all out-of-domain datasets.',
            domain='out',
            normalize_aspect=True
        )
    ]

    def _get_dataset_names(self):
        return [dnm for dnm, d_dset in config().items() if d_dset['domain'] == self.config.domain]

    def _info(self):
        dnms = self._get_dataset_names()
        labels = [config(f'{dnm}.splits.{split}.labels') for dnm in dnms for split in ['train', 'test']]
        mic(dnms, labels)
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                text=datasets.Value(dtype='string'), labels=labels, dataset_name=datasets.ClassLabel(names=dnms)
            ),
            homepage=_URL
            # TODO: citation
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        # for aspect-normalized versions of the dataset, we include a validation set
        splits = ['train', 'eval', 'test'] if self.config.normalize_aspect else ['train', 'test']
        dnms = self._get_dataset_names()
        dir_nm = self.config.to_dir_name()
        split2paths = {s: [os_join(dir_nm, dnm, s) for dnm in dnms] for s in splits}
        mic(split2paths)

        downloaded_files = dl_manager.download_and_extract('datasets.zip')
        mic(downloaded_files)
        raise NotImplementedError

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
        ]