parquet-converter commited on
Commit
8f72d51
·
1 Parent(s): 26155cc

Update parquet files

Browse files
README.md DELETED
@@ -1,66 +0,0 @@
1
- ---
2
- language:
3
- - en
4
- multilinguality:
5
- - monolingual
6
- size_categories:
7
- - 100K<n<1M
8
- task_categories:
9
- - summarization
10
- - text-generation
11
- task_ids: []
12
- tags:
13
- - conditional-text-generation
14
- ---
15
-
16
- # PubMed dataset for summarization
17
-
18
- Dataset for summarization of long documents.\
19
- Adapted from this [repo](https://github.com/armancohan/long-summarization).\
20
- Note that original data are pre-tokenized so this dataset returns " ".join(text) and add "\n" for paragraphs. \
21
- This dataset is compatible with the [`run_summarization.py`](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) script from Transformers if you add this line to the `summarization_name_mapping` variable:
22
- ```python
23
- "ccdv/pubmed-summarization": ("article", "abstract")
24
- ```
25
-
26
- ### Data Fields
27
-
28
- - `id`: paper id
29
- - `article`: a string containing the body of the paper
30
- - `abstract`: a string containing the abstract of the paper
31
-
32
- ### Data Splits
33
-
34
- This dataset has 3 splits: _train_, _validation_, and _test_. \
35
- Token counts are white space based.
36
-
37
- | Dataset Split | Number of Instances | Avg. tokens |
38
- | ------------- | --------------------|:----------------------|
39
- | Train | 119,924 | 3043 / 215 |
40
- | Validation | 6,633 | 3111 / 216 |
41
- | Test | 6,658 | 3092 / 219 |
42
-
43
-
44
- # Cite original article
45
- ```
46
- @inproceedings{cohan-etal-2018-discourse,
47
- title = "A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents",
48
- author = "Cohan, Arman and
49
- Dernoncourt, Franck and
50
- Kim, Doo Soon and
51
- Bui, Trung and
52
- Kim, Seokhwan and
53
- Chang, Walter and
54
- Goharian, Nazli",
55
- booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
56
- month = jun,
57
- year = "2018",
58
- address = "New Orleans, Louisiana",
59
- publisher = "Association for Computational Linguistics",
60
- url = "https://aclanthology.org/N18-2097",
61
- doi = "10.18653/v1/N18-2097",
62
- pages = "615--621",
63
- abstract = "Neural abstractive summarization models have led to promising results in summarizing relatively short documents. We propose the first model for abstractive summarization of single, longer-form documents (e.g., research papers). Our approach consists of a new hierarchical encoder that models the discourse structure of a document, and an attentive discourse-aware decoder to generate the summary. Empirical results on two large-scale datasets of scientific papers show that our model significantly outperforms state-of-the-art models.",
64
- }
65
- ```
66
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
val.zip → document/pubmed-summarization-test.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:37a0b6b2c2f9b3fc8296f2d244ec813664571e7ef5bec8cf015626c83e485460
3
- size 43705498
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73567d23374b73d5261ae2643ce54688c881346ddf2dd42576975bf0b604a9fe
3
+ size 58465009
train.zip → document/pubmed-summarization-train-00000-of-00005.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:988355271552520ad30fab4c2d63a3ef8d985a179e30089da766ee04ec017a10
3
- size 779257354
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:230d71187eb48c9bd8257fcef975b7c84fd8724ba329aa954d800cd5ad46d7a4
3
+ size 234167930
document/pubmed-summarization-train-00001-of-00005.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:834d94a770e63510b5eeea918ed617abc06cb4bdb1e3f186672b7bc840c7f149
3
+ size 233145675
document/pubmed-summarization-train-00002-of-00005.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9797cf01a76eccfa1f0cab248593414f71ab3b6e8075cc8fa667d4e23e898c0a
3
+ size 232427705
document/pubmed-summarization-train-00003-of-00005.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:038d896a6c9caf4628682ae7a36e0e903ef91d657f05467627ea357fd3c42b33
3
+ size 233419272
document/pubmed-summarization-train-00004-of-00005.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8cba2ead8b69ffdfca83ebafb77f138d6aeac632c7d79551e603e3682caa131
3
+ size 104693540
vocab.zip → document/pubmed-summarization-validation.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5d25daab57cafba29ff14d3ecd45bdf8d0a3fa882426391f61a891f0817b7a73
3
- size 295286
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57f972ada9d5562cb0d39cbc6c71931b85afa8f45e7d5880c2e4dabf49272d67
3
+ size 58569925
pubmed-summarization.py DELETED
@@ -1,129 +0,0 @@
1
- import json
2
- import os
3
-
4
- import datasets
5
- from datasets.tasks import TextClassification
6
-
7
- _CITATION = None
8
-
9
-
10
- _DESCRIPTION = """
11
- PubMed dataset for summarization.
12
- From paper: A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents" by A. Cohan et al.
13
- See: https://aclanthology.org/N18-2097.pdf
14
- See: https://github.com/armancohan/long-summarization
15
- """
16
- _CITATION = """\
17
- @inproceedings{cohan-etal-2018-discourse,
18
- title = "A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents",
19
- author = "Cohan, Arman and
20
- Dernoncourt, Franck and
21
- Kim, Doo Soon and
22
- Bui, Trung and
23
- Kim, Seokhwan and
24
- Chang, Walter and
25
- Goharian, Nazli",
26
- booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
27
- month = jun,
28
- year = "2018",
29
- address = "New Orleans, Louisiana",
30
- publisher = "Association for Computational Linguistics",
31
- url = "https://aclanthology.org/N18-2097",
32
- doi = "10.18653/v1/N18-2097",
33
- pages = "615--621",
34
- abstract = "Neural abstractive summarization models have led to promising results in summarizing relatively short documents. We propose the first model for abstractive summarization of single, longer-form documents (e.g., research papers). Our approach consists of a new hierarchical encoder that models the discourse structure of a document, and an attentive discourse-aware decoder to generate the summary. Empirical results on two large-scale datasets of scientific papers show that our model significantly outperforms state-of-the-art models.",
35
- }
36
- """
37
- _ABSTRACT = "abstract"
38
- _ARTICLE = "article"
39
-
40
- class PubMedSummarizationConfig(datasets.BuilderConfig):
41
- """BuilderConfig for PubMedSummarization."""
42
-
43
- def __init__(self, **kwargs):
44
- """BuilderConfig for PubMedSummarization.
45
- Args:
46
- **kwargs: keyword arguments forwarded to super.
47
- """
48
- super(PubMedSummarizationConfig, self).__init__(**kwargs)
49
-
50
-
51
- class PubMedSummarizationDataset(datasets.GeneratorBasedBuilder):
52
- """PubMedSummarization Dataset."""
53
-
54
- _TRAIN_FILE = "train.zip"
55
- _VAL_FILE = "val.zip"
56
- _TEST_FILE = "test.zip"
57
-
58
- BUILDER_CONFIGS = [
59
- PubMedSummarizationConfig(
60
- name="section",
61
- version=datasets.Version("1.0.0"),
62
- description="PubMed dataset for summarization, concat sections",
63
- ),
64
- PubMedSummarizationConfig(
65
- name="document",
66
- version=datasets.Version("1.0.0"),
67
- description="PubMed dataset for summarization, document",
68
- ),
69
- ]
70
-
71
- DEFAULT_CONFIG_NAME = "section"
72
-
73
- def _info(self):
74
- # Should return a datasets.DatasetInfo object
75
- return datasets.DatasetInfo(
76
- description=_DESCRIPTION,
77
- features=datasets.Features(
78
- {
79
- _ARTICLE: datasets.Value("string"),
80
- _ABSTRACT: datasets.Value("string"),
81
- #"id": datasets.Value("string"),
82
- }
83
- ),
84
- supervised_keys=None,
85
- homepage="https://github.com/armancohan/long-summarization",
86
- citation=_CITATION,
87
- )
88
-
89
- def _split_generators(self, dl_manager):
90
-
91
- train_path = os.path.join(dl_manager.download_and_extract(self._TRAIN_FILE), "train.txt")
92
- val_path = os.path.join(dl_manager.download_and_extract(self._VAL_FILE), "val.txt")
93
- test_path = os.path.join(dl_manager.download_and_extract(self._TEST_FILE), "test.txt")
94
-
95
- return [
96
- datasets.SplitGenerator(
97
- name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}
98
- ),
99
- datasets.SplitGenerator(
100
- name=datasets.Split.VALIDATION, gen_kwargs={"filepath": val_path}
101
- ),
102
- datasets.SplitGenerator(
103
- name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}
104
- ),
105
- ]
106
-
107
- def _generate_examples(self, filepath):
108
- """Generate PubMedSummarization examples."""
109
- with open(filepath, encoding="utf-8") as f:
110
- for id_, row in enumerate(f):
111
- data = json.loads(row)
112
-
113
- """
114
- 'article_id': str,
115
- 'abstract_text': List[str],
116
- 'article_text': List[str],
117
- 'section_names': List[str],
118
- 'sections': List[List[str]]
119
- """
120
- if self.config.name == "document":
121
- article = [d.strip() for d in data["article_text"]]
122
- article = " ".join(article)
123
- else:
124
- article = [item.strip() for sublist in data["sections"] for item in sublist]
125
- article = " \n ".join(article)
126
-
127
- abstract = [ab.replace("<S>", "").replace("</S>", "").strip() for ab in data["abstract_text"]]
128
- abstract = " \n ".join(abstract)
129
- yield id_, {"article": article, "abstract": abstract}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
test.zip → section/pubmed-summarization-test.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fa6666b57d2335a1962f2d8a8511a7bf5f6e457215323645be62457ce8bbfcdf
3
- size 43787908
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b874f6c23285e92811a1a15a592976682210852d650bef97b8878cf32f10a812
3
+ size 58908341
section/pubmed-summarization-train-00000-of-00005.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:288cfe67d81840efc9d57889f97000d0c47717754fd0ebf4461dd261e18441cc
3
+ size 235768701
section/pubmed-summarization-train-00001-of-00005.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd90e95a931012ff783ae200cd269a9ed06ad07e2fb1c37f59d93c01cbec93f3
3
+ size 234683886
section/pubmed-summarization-train-00002-of-00005.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af18cdc4fdbe057f6f39406f9043e128fbc3e31f5f7930dd49c1ebb8dd8ccc31
3
+ size 234069291
section/pubmed-summarization-train-00003-of-00005.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adb243d32f563fd0f88d12abd788d60924534d78ecfbf7877259f55ee4ee2c9a
3
+ size 235284233
section/pubmed-summarization-train-00004-of-00005.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8241bfec2fd7d5a8bc755ebf87b2f23ea4a24f341154880ed567c1c7b006997
3
+ size 105420588
section/pubmed-summarization-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19267b3fe8847f5c83bc67ff0666d5102b2808c1e29b8f6e848e7e63efcaae85
3
+ size 58998584