Datasets:

ArXiv:
License:
File size: 5,898 Bytes
871757f
c994231
871757f
c994231
 
 
 
 
 
 
 
 
 
 
871757f
c994231
871757f
c994231
871757f
 
 
 
 
 
c994231
871757f
 
c994231
 
871757f
c994231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7847b7
871757f
 
b7847b7
871757f
 
 
b7847b7
 
871757f
 
 
c994231
871757f
 
 
 
 
c994231
871757f
 
 
c994231
871757f
 
e9c1cc5
 
 
 
 
 
 
 
fb1611a
 
e9c1cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
871757f
 
c994231
d894f02
 
 
 
 
 
 
 
871757f
 
 
c994231
d894f02
c994231
d894f02
c994231
871757f
 
 
c994231
fb1611a
 
c994231
 
 
 
871757f
c994231
 
871757f
 
 
 
 
 
 
 
c994231
 
 
871757f
 
 
 
 
b7847b7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
---
pretty_name: Snow Mountain
language:
- hi
- bgc
- kfs
- dgo
- bhd
- gbk
- xnr
- kfx
- mjl
- kfo
- bfz
annotations_creators:
- 'null': null
language_creators:
- 'null': null
multilinguality:
- multilingual
source_datasets:
- Snow Mountain
task_categories:
- automatic-speech-recognition
- text-to-speech
task_ids: []
configs:
- hi
- bgc
dataset_info:
- config_name: hi
  features:
  - name: Unnamed
    dtype: int64
  - name: sentence
    dtype: string
  - name: path
    dtype: string
  splits:
  - name: train_500
    num_examples: 400
  - name: val_500
    num_examples: 100
  - name: train_1000
    num_examples: 800
  - name: val_1000
    num_examples: 200
  - name: test_common
    num_examples: 500
  dataset_size: 71.41 hrs
- config_name: bgc
  features:
  - name: Unnamed
    dtype: int64
  - name: sentence
    dtype: string
  - name: path
    dtype: string
  splits:
  - name: train_500
    num_examples: 400
  - name: val_500
    num_examples: 100
  - name: train_1000
    num_examples: 800
  - name: val_1000
    num_examples: 200
  - name: test_common
    num_examples: 500
  dataset_size: 27.41 hrs
license: cc-by-sa-4.0
---

# Snow Mountain

## Dataset Description

- **Paper: https://arxiv.org/abs/2206.01205**
- **Point of Contact: Joel Mathew**

### Dataset Summary

The Snow Mountain dataset contains the audio recordings (in .mp3 format) and the corresponding text of The Bible (contains both Old Testament (OT) and New Testament (NT)) in 11 Indian languages. The recordings were done in a studio setting by native speakers. Each language has a single speaker in the dataset. Most of these languages are geographically concentrated in the Northern part of India around the state of Himachal Pradesh. Being related to Hindi they all use the Devanagari script for transcription. 

We have used this dataset for experiments in ASR tasks. But these could be used for other applications in speech domain, like speaker recognition, language identification or even as unlabelled corpus for pre-training.

### Supported Tasks and Leaderboards

Atomatic speech recognition, Speech-to-Text, Speaker recognition, Language identification

### Languages

Hindi, Haryanvi, Bilaspuri, Dogri, Bhadrawahi, Gaddi, Kangri, Kulvi, Mandeali, Kulvi Outer Seraji, Pahari Mahasui, Malayalam, Kannada, Tamil, Telugu 

## Dataset Structure
```
data
  |- cleaned
    |- lang1
      |- book1_verse_audios.tar.gz
      |- book2_verse_audios.tar.gz
        ...
        ...
      |- all_verses.tar.gz
      |- short_verses.tar.gz
    |- lang2
      ...
      ...   
  |- experiments 
    |- lang1
      |- train_500.csv
      |- val_500.csv
      |- test_common.csv
        ...
        ...
    |- lang2
      ...
      ...
  |- raw
    |- lang1
      |- chapter1_audio.mp3
      |- chapter2_audio.mp3
        ...
        ...
      |- text
        |- book1.csv
        |- book1.usfm
          ...
          ...
    |- lang2
      ...
      ...
```
### Data Instances

A data point comprises of the path to the audio file, called `path` and its transcription, called `sentence`. 

```
{'sentence': 'क्यूँके तू अपणी बात्तां कै कारण बेकसूर अर अपणी बात्तां ए कै कारण कसूरवार ठहराया जावैगा',
 'audio': {'path': 'data/cleaned/haryanvi/MAT/MAT_012_037.wav',
  'array': array([0., 0., 0., ..., 0., 0., 0.]),
  'sampling_rate': 16000},
 'path': 'data/cleaned/haryanvi/MAT/MAT_012_037.wav'}
```

### Data Fields

`path`: The path to the audio file

`audio`: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the "audio" column, i.e. `dataset[0]["audio"]` should always be preferred over `dataset["audio"][0]`.

`sentence`: The transcription of the audio file.

### Data Splits

We create splits of the cleaned data for training and analysing the performance of ASR models. The splits are available in the `experiments` directory.  The file names indicate the experiment and the split category. Additionally two CSV files are included in the data splits - `all_verses` and `short_verses`. Various data splits were generated from these main two CSVs. `short_verses.csv` contains audios of length < 10s and corresponding transcriptions. `all_verses.csv` contains complete cleaned verses including long and short audios. Due to the large size (>10MB), we keep these CSVs compressed in the `tar.gz format in the `cleaned` folder.

## Dataset Loading
`raw` folder has chapter wise audios in .mp3 format. For doing experiments, we might need audios in .wav format. Verse wise audio files are keept in the `cleaned` folder in .wav format. This results in a much larger size which contributes to longer loading time into memory. Here is the approximate time needed for loading the Dataset.
  - Hindi (OT books): ~20 minutes
  - Hindi minority languages (NT books): ~9 minutes
  - Dravidian languages (OT+NT books): ~30 minutes

## Details
Please refer to the paper for more details on the creation and the rationale for the splits we created in the dataset.

### Licensing Information

The data is licensed under the Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0)


### Citation Information

Please cite this work if you make use of it:

```
@inproceedings{Raju2022SnowMD,
  title={Snow Mountain: Dataset of Audio Recordings of The Bible in Low Resource Languages},
  author={Kavitha Raju and V. Anjaly and R. Allen Lish and Joel Mathew},
  year={2022}
}
```