File size: 7,118 Bytes
0a85bcb dd762ae b785a72 120ddab 6783eea eaacf5e 120ddab 0a85bcb a76ca7e d4431d3 a76ca7e 87e895e c6d318b 0a85bcb c6d318b d60a70d eaacf5e d60a70d c6d318b fd3f890 eaacf5e fd3f890 c6d318b eaacf5e 0dc716f d3eb3f5 0dc716f d3eb3f5 0dc716f 637828b bb313f3 637828b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
# AidLite SDK Development Documents
## CONTENTS
- [Introduction](#introduction)
- [OS Environmental Description](#os-environmental-description)
- [Installation](#installation)
- [Tutorial](#tutorial)
- [API Documents](#api-documents)
## Introduction
**AidLite SDK** (also called **AidSDK**) is the AI inference SDK encapsulated by Aplux. It is aim to use a unified API to load and inference AI model for various mainstream AI frameworks, and to be able to schedule various computing units of the hardware (CPU, GPU, NPU). AidLux SDK is part of the AI tool chain in the AIoT field launched by Aplux Company.
The Aplux AI tool chain covers the entire inference part, as shown in the figure below:
<img src="https://cdn-uploads.huggingface.co/production/uploads/64c1fef5b9d81735a12c3fcc/GX84Ifi8xjyxgfjOQzsly.png" width=800>
Using Aplux AI tool chain can greatly reduce the development cycle in deploying AI models on edge devices.
<img src="https://cdn-uploads.huggingface.co/production/uploads/64c1fef5b9d81735a12c3fcc/jgOWtSxHqpRFMf--hfitN.png" width=800>
AidLite works with AIMO (a model conversion platform), can help developers quickly migrate and deploy existing models to edge devices.
- AIMO online access link: [AI Model Optimization Platform](https://aidlux.com/product/aimo)
**AidLite SDK features are shown in the figure**
<img src="https://cdn-uploads.huggingface.co/production/uploads/64c1fef5b9d81735a12c3fcc/OFMBCLKtMaPkP8aI92GtI.png" width=400>
## OS Environmental Description
AidLite SDK support Android OS, Linux OS and AidLux OS.
**AI runtime support**
||Qualcomm SNPE|Qualcomm QNN|TFLite|RKNN|
|:----:|:----:|:----:|:----:|:----:|
|AidLux OS|β
|β
|β
|β
|
|Linux OS|β
|β
|β
|β
|
|Android OS|β
|π§|π§|β|
β
: Supported
π§: Supported in the next version
β: To be supported
**AI Box support**
||Qualcomm SNPE1.61|Qualcomm SNPE2.1x|Qualcomm QNN|RKNN|
|:----:|:----:|:----:|:----:|:----:|
|QCS6490|β
|β
|β
|β|
|QCS8250|β
|β|β|β|
|QCS8550|β|β
|β
|β|
|RK3588|β|β|β|β
|
β
: Supported
β: Unsupported
## Installation
### Installation for AidLux
1. Install AidLite in APP store
<img src="https://cdn-uploads.huggingface.co/production/uploads/64c1fef5b9d81735a12c3fcc/hlo97HWQaECIFQSQMYb4S.png">
> the password is `aidlux`
2. Install AidLite in terminal
```bash
# password is aidlux
# aidlite c++ sdk
sudo aid-pkg -i aidlite-sdk
# aidlite python sdk
python3 -m pip install pyaidlite -i https://mirrors.aidlux.com --trusted-host mirrors.aidlux.com
```
### Installation for Linux
The AidLite SDK is pre-install in AI Box Linux OS.
The update way show blow:
```bash
# password is aidlux
# aidlite c++ sdk
sudo aid-pkg -i aidlite-sdk
# aidlite python sdk
python3 -m pip install pyaidlite -i https://mirrors.aidlux.com --trusted-host mirrors.aidlux.com
```
### Installation for Android
1. Ensure compileSdk=30, minSdk=21, targetSdk=28 in the project build.gradle file

2. Import SDK: Create a new libs folder under the main application app under the project view of android studio, and import AidliteSDK-release.aar and snpe-release.aar into libs

3. Add dependencies: Add dependencies under the dependencies of build.gradle in the main application app directory
```java
implementation fileTree(include: ['*.jar', "*.aar"], dir: 'libs')
implementation 'com.github.tiann:FreeReflection:3.1.0'
implementation 'com.elvishew:xlog:1.10.1'
implementation "com.blankj:utilcodex:1.30.6"
implementation 'net.java.dev.jna:jna:5.10.0'
implementation 'com.squareup.retrofit2:retrofit:2.9.0'
implementation 'com.squareup.retrofit2:converter-gson:2.9.0'
implementation "com.squareup.okhttp3:logging-interceptor:4.9.0"
implementation 'org.jetbrains.kotlinx:kotlinx-coroutines-android:1.3.9'
```
4. Add permissions and attribute configurations to the app/mainifests/AndroidManifest.xml file under the Android view

```xml
<uses-permission android:name="android.permission.READ_PRIVILEGED_PHONE_STATE" />
<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>
<uses-permission android:name="android.permission.READ_PHONE_STATE" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
```
5. Add packagingOptions in build.gradle file
```java
packagingOptions {
doNotStrip "*/arm64-v8a/libsnpe_dsp_v68_domains_v3_skel.so"
doNotStrip "*/arm64-v8a/libsnpe_dsp_v66_domains_v2_skel.so"
doNotStrip "*/arm64-v8a/libsnpe_dsp_v65_domains_v2_skel.so"
doNotStrip "*/arm64-v8a/libsnpe_dsp_domains_v2.so"
doNotStrip "*/arm64-v8a/libsnpe_dsp_domains_v3.so"
doNotStrip "*/arm64-v8a/libSNPE.so"
doNotStrip "*/arm64-v8a/libsnpe-android.so"
}
```
## Tutorial
### AidLite SDK Demo in AidLux/Linux
1. After installing AidLite SDK, the demo program will download automatically.
```bash
# Demo files path
/usr/local/share/aidlite/examples
```
2. Use `ls` to show file structure
```bash
ls /usr/local/share/aidlite/examples
|__cpp
|__data
|__python
```
3. Run demo
**C++ demo**
```bash
sudo apt update
sudo apt-get install cmake -y
# Our sample program in [/usr/local/share/aidlite/examples/] directory.
# We recommend that you copy the sample program directory to your own working directory.
mkdir -p /home/aidlux/your_work_dir/ && cp -r /usr/local/share/aidlite/examples/ /home/aidlux/your_work_dir/
cd /home/aidlux/your_work_dir/examples/cpp/
# If you do not want to copy the sample program, then next few steps require Sudo permissions
mkdir -p build && cd build
cmake ..
make
# Run the resulting executable program
./snpe2_yolov5_multi
```
**Python demo**
```bash
sudo cp -r /usr/local/share/aidlite/examples /home/aidlux/examples
cd /home/aidlux/
sudo chown -R aidlux:aidlux ~/examples
cd ~/examples/python
python3 snpe2_yolov5_multi.py
```
### AidLite SDK Demo in Android
AidLite SDK provides a simple and runnable Android project demo, which includes three quantitative models:
- Unet (defect detection)
- ResNet18 (classification)
- YOLOv5s (target detection)
- CPU bind demo
Download Android project and run demo:
- [AidLux SDK Sample(SNPE1.61)](https://aidlux-files.oss-cn-shenzhen.aliyuncs.com/aid-sdk/sample/AidSDKSample(SNPE1.61).zip)
- [AidLux SDK Sample(SNPE2.10)](https://aidlux-files.oss-cn-shenzhen.aliyuncs.com/aid-sdk/sample/AidSDKSample(SNPE2.10).zip)
## API Documents
- [AidLite SDK C++](https://v2.docs.aidlux.com/sdk-api/aidlite-sdk/aidlite-c++)
- [AidLite SDK Python](https://v2.docs.aidlux.com/sdk-api/aidlite-sdk/aidlite-python)
- [AidLite SDK Android](https://v2.docs.aidlux.com/sdk-api/aidlite-sdk/aidlite-android) |