sumanthd commited on
Commit
984b75b
·
1 Parent(s): cd4a6c9

add README

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ configs:
2
+ - config_name: indiccorp_v2
3
+ data_files:
4
+ - split: asm_Beng
5
+ path: "data/as.txt"
6
+ - split: ben_Beng
7
+ path: "data/bn.txt"
8
+ - split: brx_Deva
9
+ path: "data/bd.txt"
10
+ - split: doi_Deva
11
+ path: "data/dg.txt"
12
+ - split: gom_Deva
13
+ path: "data/gom.txt"
14
+ - split: guj_Gujr
15
+ path: "data/gu.txt"
16
+ - split: hin_Deva
17
+ path: "data/hi-*.txt"
18
+ - split: kan_Knda
19
+ path: "data/kn.txt"
20
+ - split: kas_Arab
21
+ path: "data/ks.txt"
22
+ - split: mai_Deva
23
+ path: "data/mai.txt"
24
+ - split: mal_Mlym
25
+ path: "data/ml.txt"
26
+ - split: mar_Deva
27
+ path: "data/mr.txt"
28
+ - split: mni_Mtei
29
+ path: "data/mni.txt"
30
+ - split: npi_Deva
31
+ path: "data/ne.txt"
32
+ - split: ory_Orya
33
+ path: "data/or.txt"
34
+ - split: pan_Guru
35
+ path: "data/pa.txt"
36
+ - split: san_Deva
37
+ path: "data/sa.txt"
38
+ - split: snd_Deva
39
+ path: "data/sd.txt"
40
+ - split: tam_Taml
41
+ path: "data/ta.txt"
42
+ - split: tel_Telu
43
+ path: "data/te.txt"
44
+ - split: urd_Arab
45
+ path: "data/ur.txt"
46
+ - split: khasi
47
+ path: "data/kha.txt"
48
+ - split: santhali
49
+ path: "data/sat.txt"
50
+ ---
51
+ # IndicCorp v2 Dataset
52
+
53
+ ## Towards Leaving No Indic Language Behind: Building Monolingual Corpora, Benchmark and Models for Indic Languages
54
+ > This repository contains the pretraining data for the paper published at ACL 2023.
55
+
56
+ # Example Usage
57
+ ```python
58
+ from datasets import load_dataset
59
+
60
+ # Load the Telugu subset of the dataset
61
+ dataset = load_dataset("ai4bharat/IndicCorpV2", "indiccorp_v2", data_dir="data/tel_Telu")
62
+ ```
63
+
64
+
65
+ # License
66
+ All the datasets created as part of this work will be released under a [CC-0](https://creativecommons.org/publicdomain/zero/1.0) license and all models & code will be release under an [MIT license](https://github.com/ai4bharat/IndicBERT/blob/main/LICENSE)
67
+
68
+
69
+ # Citation
70
+ ```bibtex
71
+ @inproceedings{doddapaneni-etal-2023-towards,
72
+ title = "Towards Leaving No {I}ndic Language Behind: Building Monolingual Corpora, Benchmark and Models for {I}ndic Languages",
73
+ author = "Doddapaneni, Sumanth and
74
+ Aralikatte, Rahul and
75
+ Ramesh, Gowtham and
76
+ Goyal, Shreya and
77
+ Khapra, Mitesh M. and
78
+ Kunchukuttan, Anoop and
79
+ Kumar, Pratyush",
80
+ editor = "Rogers, Anna and
81
+ Boyd-Graber, Jordan and
82
+ Okazaki, Naoaki",
83
+ booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
84
+ month = jul,
85
+ year = "2023",
86
+ address = "Toronto, Canada",
87
+ publisher = "Association for Computational Linguistics",
88
+ url = "https://aclanthology.org/2023.acl-long.693",
89
+ doi = "10.18653/v1/2023.acl-long.693",
90
+ pages = "12402--12426",
91
+ abstract = "Building Natural Language Understanding (NLU) capabilities for Indic languages, which have a collective speaker base of more than one billion speakers is absolutely crucial. In this work, we aim to improve the NLU capabilities of Indic languages by making contributions along 3 important axes (i) monolingual corpora (ii) NLU testsets (iii) multilingual LLMs focusing on Indic languages. Specifically, we curate the largest monolingual corpora, IndicCorp, with 20.9B tokens covering 24 languages from 4 language families - a 2.3x increase over prior work, while supporting 12 additional languages. Next, we create a human-supervised benchmark, IndicXTREME, consisting of nine diverse NLU tasks covering 20 languages. Across languages and tasks, IndicXTREME contains a total of 105 evaluation sets, of which 52 are new contributions to the literature. To the best of our knowledge, this is the first effort towards creating a standard benchmark for Indic languages that aims to test the multilingual zero-shot capabilities of pretrained language models. Finally, we train IndicBERT v2, a state-of-the-art model supporting all the languages. Averaged across languages and tasks, the model achieves an absolute improvement of 2 points over a strong baseline. The data and models are available at \url{https://github.com/AI4Bharat/IndicBERT}.",
92
+ }
93
+ ```