""" This project is built upon the open-source project 🤗 LeRobot: https://github.com/huggingface/lerobot We are grateful to the LeRobot team for their outstanding work and their contributions to the community. If you find this project useful, please also consider supporting and exploring LeRobot. """ import os import cv2 import json import glob import shutil import logging import argparse from pathlib import Path from typing import Callable from functools import partial from math import ceil from copy import deepcopy import subprocess from multiprocessing import Pool, cpu_count import h5py import torch import einops import numpy as np from PIL import Image from tqdm import tqdm HEAD_COLOR = "head.mp4" HAND_LEFT_COLOR = "hand_left.mp4" HAND_RIGHT_COLOR = "hand_right.mp4" HEAD_CENTER_FISHEYE_COLOR = "head_front_fisheye.mp4" HEAD_LEFT_FISHEYE_COLOR = "head_left_fisheye.mp4" HEAD_RIGHT_FISHEYE_COLOR = "head_right_fisheye.mp4" BACK_LEFT_FISHEYE_COLOR = "back_left_fisheye.mp4" BACK_RIGHT_FISHEYE_COLOR = "back_right_fisheye.mp4" HEAD_DEPTH = "head" ALL_VIDEOS = [HEAD_COLOR, HAND_LEFT_COLOR, HAND_RIGHT_COLOR, HEAD_CENTER_FISHEYE_COLOR, HEAD_LEFT_FISHEYE_COLOR, HEAD_RIGHT_FISHEYE_COLOR, BACK_LEFT_FISHEYE_COLOR, BACK_RIGHT_FISHEYE_COLOR] DEFAULT_IMAGE_PATH = ( "images/{image_key}/episode_{episode_index:06d}/frame_{frame_index:06d}.jpg" ) FEATURES = { "observation.images.top_head": { "dtype": "video", "shape": [480, 640, 3], "names": ["height", "width", "channel"], "video_info": { "video.fps": 30.0, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": False, "has_audio": False, }, }, "observation.images.cam_top_depth": { "dtype": "image", "shape": [480, 640, 1], "names": ["height", "width", "channel"], }, "observation.images.hand_left": { "dtype": "video", "shape": [480, 640, 3], "names": ["height", "width", "channel"], "video_info": { "video.fps": 30.0, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": False, "has_audio": False, }, }, "observation.images.hand_right": { "dtype": "video", "shape": [480, 640, 3], "names": ["height", "width", "channel"], "video_info": { "video.fps": 30.0, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": False, "has_audio": False, }, }, "observation.images.head_center_fisheye": { "dtype": "video", "shape": [748, 960, 3], "names": ["height", "width", "channel"], "video_info": { "video.fps": 30.0, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": False, "has_audio": False, }, }, "observation.images.head_left_fisheye": { "dtype": "video", "shape": [748, 960, 3], "names": ["height", "width", "channel"], "video_info": { "video.fps": 30.0, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": False, "has_audio": False, }, }, "observation.images.head_right_fisheye": { "dtype": "video", "shape": [748, 960, 3], "names": ["height", "width", "channel"], "video_info": { "video.fps": 30.0, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": False, "has_audio": False, }, }, "observation.images.back_left_fisheye": { "dtype": "video", "shape": [748, 960, 3], "names": ["height", "width", "channel"], "video_info": { "video.fps": 30.0, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": False, "has_audio": False, }, }, "observation.images.back_right_fisheye": { "dtype": "video", "shape": [748, 960, 3], "names": ["height", "width", "channel"], "video_info": { "video.fps": 30.0, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": False, "has_audio": False, }, }, "observation.state": { "dtype": "float32", "shape": [22], }, "action": { "dtype": "float32", "shape": [22], }, "episode_index": { "dtype": "int64", "shape": [1], "names": None, }, "frame_index": { "dtype": "int64", "shape": [1], "names": None, }, "index": { "dtype": "int64", "shape": [1], "names": None, }, "task_index": { "dtype": "int64", "shape": [1], "names": None, }, } from modified_lerobot_dataset import AgiBotDataset def process_video(video_path): output = video_path.replace('.mp4', '_encode.mp4') try: command = [ "ffmpeg", "-i", video_path, "-vcodec", "libsvtav1", "-pix_fmt", "yuv420p", "-r", "30", "-g", "2", "-crf", "30", "-vf", "scale=640:360:flags=bicubic", "-loglevel", "error", "-y", output ] subprocess.run(command, check=True) except subprocess.CalledProcessError as e: print(f"Video failure: {' '.join(command)}, error: {e}") except Exception as e: print(f"Video unknwon failure: {' '.join(command)}, error: {e}") finally: pass def preprocess_vides(episode_list, debug=False): video_paths = [] for episode_path in episode_list: video_dir = episode_path.replace('meta_info', 'observation') + "/video" for file in ALL_VIDEOS: video_path = os.path.join(video_dir, file) video_paths.append(video_path) if debug: for video in video_paths: process_video(video) else: with Pool(processes=os.cpu_count() // 2) as pool: for _ in tqdm(pool.imap_unordered(process_video, video_paths), total=len(video_paths), desc="Video preprocessing"): pass def load_depths(root_dir: str, camera_name: str): cam_path = Path(root_dir) all_imgs = sorted(list(cam_path.glob(f"*")), key=lambda x: int(x.stem)) return [np.array(Image.open(f"{file}/{camera_name}.png")).astype(np.float32) / 1000 for file in all_imgs] def load_local_dataset(episode_path: str) -> list | None: """Load local dataset and return a dict with observations and actions""" observation_path = episode_path.replace('meta_info', 'observation') with open(f"{episode_path}/task_info.json") as f: task_info = json.load(f) task = task_info['task_name'] with h5py.File(Path(episode_path) / "aligned_joints.h5") as f: state_joint = np.array(f["state/joint/position"]) joint_names = f["state/joint"].attrs['name'].tolist() head_joint_names = [ "joint_head_yaw", "joint_head_pitch", ] body_joint_names = [ "joint_lift_body", "joint_body_pitch", ] arm_joint_names = [ "Joint1_l", "Joint1_r", "Joint2_l", "Joint2_r", "Joint3_l", "Joint3_r", "Joint4_l", "Joint4_r", "Joint5_l", "Joint5_r", "Joint6_l", "Joint6_r", "Joint7_l", "Joint7_r", ] effector_joint_names = [ "right_Left_1_Joint", "right_Right_1_Joint", "left_Left_1_Joint", "left_Right_1_Joint" ] # Get indices for arm and effector joints from the first frame head_joint_indices = [joint_names.index(name) for name in head_joint_names] body_joint_indices = [joint_names.index(name) for name in body_joint_names] arm_joint_indices = [joint_names.index(name) for name in arm_joint_names] effector_joint_indices = [joint_names.index(name) for name in effector_joint_names] # Extract joint positions for all frames state_head = state_joint[:, head_joint_indices] state_body = state_joint[:, body_joint_indices] state_arm = state_joint[:, arm_joint_indices] state_effector = state_joint[:, effector_joint_indices] # Get action from state action_head = state_head[1:] - state_head[:-1] action_body = state_body[1:] - state_body[:-1] action_arm = state_arm[1:] - state_arm[:-1] action_effector = state_effector[1:] - state_effector[:-1] # repeat the last frame of the action action_head = np.concatenate([action_head, action_head[-1:]]) action_body = np.concatenate([action_body, action_body[-1:]]) action_arm = np.concatenate([action_arm, action_arm[-1:]]) action_effector = np.concatenate([action_effector, action_effector[-1:]]) states_value = np.hstack( [state_head, state_body, state_arm, state_effector] ).astype(np.float32) assert ( action_arm.shape[0] == action_effector.shape[0] ), f"shape of action_arm:{action_arm.shape};shape of action_effector:{action_effector.shape}" action_value = np.hstack( [action_head, action_body, action_arm, action_effector] ).astype(np.float32) depth_imgs = load_depths(f"{observation_path}/depth", HEAD_DEPTH) assert len(depth_imgs) == len( states_value ), f"Number of images and states are not equal" assert len(depth_imgs) == len( action_value ), f"Number of images and actions are not equal" frames = [ { "observation.images.cam_top_depth": depth_imgs[i], "observation.state": states_value[i], "action": action_value[i], } for i in range(len(depth_imgs)) ] v_path = observation_path + "/video" videos = { "observation.images.top_head": f"{v_path}/{HEAD_COLOR}".replace('.mp4', '_encode.mp4'), "observation.images.hand_left": f"{v_path}/{HAND_LEFT_COLOR}".replace('.mp4', '_encode.mp4'), "observation.images.hand_right": f"{v_path}/{HAND_RIGHT_COLOR}".replace('.mp4', '_encode.mp4'), "observation.images.head_center_fisheye": f"{v_path}/{HEAD_CENTER_FISHEYE_COLOR}".replace('.mp4', '_encode.mp4'), "observation.images.head_left_fisheye": f"{v_path}/{HEAD_LEFT_FISHEYE_COLOR}".replace('.mp4', '_encode.mp4'), "observation.images.head_right_fisheye": f"{v_path}/{HEAD_RIGHT_FISHEYE_COLOR}".replace('.mp4', '_encode.mp4'), "observation.images.back_left_fisheye": f"{v_path}/{BACK_LEFT_FISHEYE_COLOR}".replace('.mp4', '_encode.mp4'), "observation.images.back_right_fisheye": f"{v_path}/{BACK_RIGHT_FISHEYE_COLOR}".replace('.mp4', '_encode.mp4'), } return { 'frames': frames, 'videos': videos, 'task': task } def main( src_path: str, tgt_path: str, repo_id: str, preprocess_video: bool = False, debug: bool = True, ): # remove the existing dataset if os.path.exists(f"{tgt_path}/{repo_id}"): shutil.rmtree(f"{tgt_path}/{repo_id}") dataset = AgiBotDataset.create( repo_id=repo_id, root=f"{tgt_path}/{repo_id}", fps=30, robot_type="a2d", features=FEATURES, ) episode_list = sorted( [ f for f in glob.glob(f"{src_path}/meta_info/*/*") if os.path.isdir(f) ] ) # preprocess the videos to avoid encoding error if preprocess_video: preprocess_vides(episode_list, debug) # load the raw datasets raw_datasets_before_filter = [ load_local_dataset(episode_path) for episode_path in tqdm(episode_list) ] # remove the None result from the raw_datasets raw_datasets = [ dataset for dataset in raw_datasets_before_filter if dataset is not None ] for episode_data in tqdm(raw_datasets, desc="Generating dataset from raw datasets"): for frame in tqdm(episode_data['frames'], desc="Generating dataset from raw dataset"): dataset.add_frame(frame) dataset.save_episode(task=episode_data['task'], videos=episode_data['videos']) dataset.consolidate(run_compute_stats=True) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--data_dir", type=str, required=True, ) parser.add_argument( "--save_dir", type=str, required=True, ) parser.add_argument( "--repo_id", type=str, required=True, ) parser.add_argument( "--preprocess_video", action="store_true", ) parser.add_argument( "--debug", action="store_true", ) args = parser.parse_args() assert os.path.exists(args.data_dir), f"Cannot find {args.data_dir}." main(args.data_dir, args.save_dir, args.repo_id, args.preprocess_video, args.debug)