--- dataset_info: features: - name: Sequences dtype: string - name: Classes dtype: int64 - name: Proteins dtype: string splits: - name: train num_bytes: 6154112 num_examples: 167882 - name: val num_bytes: 683364 num_examples: 18654 - name: test num_bytes: 2205303 num_examples: 60185 download_size: 6270638 dataset_size: 9042779 configs: - config_name: default data_files: - split: train path: data/train-* - split: val path: data/val-* - split: test path: data/test-* license: cc --- # Detectability - Sinitcyn This dataset contains bottom-up proteomics data from six different human cell lines (GM12878, HeLa S3, HepG2, hES1, HUVEC, and K562), deep fractioning (24–80 fractions) and three different fragmentation methods (HCD, CAD and ETD). All cell lines were digested with six different proteases (LysC, LysN, AspN, chymotrypsin, GluC and trypsin). ## Dataset Details - **Curated by:** Aalborg University - Denmark, in collaboration with Wilhelmlab, TU Munich. - **License:** CC0 1.0 Universal ### Dataset Sources The data is based on the datasets introduced in [[1]](#ref1) and available at: https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD024364 ## Uses The dataset is intended to be used for training, fine-tuning, and evaluating detectability prediction models, given a peptide sequence. ## References [1] Sinitcyn, P., Richards, A. L., Weatheritt, R. J., Brademan, D. R., Marx, H., Shishkova, E., ... & Coon, J. J. (2023). Global detection of human variants and isoforms by deep proteome sequencing. Nature biotechnology, 41(12), 1776-1786. ## Citation **BibTeX:** ```bibtex @article {Abdul-Khalek2024.10.28.620610, author = {Abdul-Khalek, Naim and Picciani, Mario and Wimmer, Reinhard and Overgaard, Michael Toft and Wilhelm, Mathias and Echers, Simon Gregersen}, title = {To fly, or not to fly, that is the question: A deep learning model for peptide detectability prediction in mass spectrometry}, elocation-id = {2024.10.28.620610}, year = {2024}, doi = {10.1101/2024.10.28.620610}, publisher = {Cold Spring Harbor Laboratory}, URL = {https://www.biorxiv.org/content/early/2024/10/31/2024.10.28.620610}, eprint = {https://www.biorxiv.org/content/early/2024/10/31/2024.10.28.620610.full.pdf}, journal = {bioRxiv} } ``` **APA:** Abdul-Khalek, N., Picciani, M., Wimmer, R., Overgaard, M. T., Wilhelm, M., & Gregersen Echers, S. (2024). To fly, or not to fly, that is the question: A deep learning model for peptide detectability prediction in mass spectrometry. bioRxiv, 2024-10.‏ ## Dataset Card Contact Simon Gregersen, sgr@bio.aau.dk, Department of Chemistry and Biosciences, Aalborg University. Mathias Wilhelm, mathias.wilhelm@tum.de, Wilhelmlab, TU Munich, School of Life Sciences, Germany.